Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T22:43:08.935Z Has data issue: false hasContentIssue false

Periodic points and homoclinic classes

Published online by Cambridge University Press:  20 December 2006

F. ABDENUR
Affiliation:
Departamento Matemática, PUC-Rio, Marquês de S. Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil (e-mail: flavio@mat.puc-rio.br)
CH. BONATTI
Affiliation:
Institut de Mathématiques de Bourgogne, B.P. 47 870, 21078 Dijon Cedex, France (e-mail: bonatti@u-bourgogne.fr)
S. CROVISIER
Affiliation:
CNRS–LAGA, UMR 7539, Université Paris 13, Avenue J.-B. Clément, 93430 Villetaneuse, France (e-mail: crovisie@math.univ-paris13.fr)
L. J. DÍAZ
Affiliation:
Departamento Matemática, PUC-Rio, Marquês de S. Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil (e-mail: lorenzojdiaz@gmail.com)
L. WEN
Affiliation:
School of Mathematics, Peking University, Beijing 100871, People's Republic of China (e-mail: lwen@math.pku.edu.cn)

Abstract

We prove that there is a residual subset $\mathcal{I}$ of ${\rm Diff}^1({\it M})$ such that any homoclinic class of a diffeomorphism $f\in \mathcal{I}$ having saddles of indices $\alpha$ and $\beta$ contains a dense subset of saddles of index $\tau$ for every $\tau\in [\alpha,\beta]\cap \mathbb{N}$. We also derive some consequences from this result about the Lyapunov exponents of periodic points and the sort of bifurcations inside homoclinic classes of $C^1$-generic diffeomorphisms.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)