Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T22:31:40.440Z Has data issue: false hasContentIssue false

Pinball billiards with dominated splitting

Published online by Cambridge University Press:  04 November 2009

ROBERTO MARKARIAN
Affiliation:
Insituto de Matemática y Estadística ‘Prof. Ing. Rafael Laguardia’ (IMERL), Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
ENRIQUE J. PUJALS
Affiliation:
IMPA-OS, Rio de Janeiro, Brasil
MARTÍN SAMBARINO
Affiliation:
Centro de Matemática, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

Abstract

We study the dynamics of a type of non-conservative billiards where the ball is ‘kicked’ by the wall giving a new impulse in the direction of the normal. For different types of billiard tables we study the existence of attractors with dominated splitting.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Araujo, V. and Pacifico, M. J.. Three dimensional flows. 26 Colóquio Brasileiro de Matemática. [26th Brazilian Mathematics Colloquium] (Rio de Janeiro, 2007) (Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]). Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2007.Google Scholar
[2]Benedicks, M. and Carleson, L.. The dynamics of the Henon map. Ann. of Math. (2) 133 (1991), 73169.Google Scholar
[3]Bonatti, C. and Viana, M.. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115 (2000), 157193.Google Scholar
[4]Bunimovich, L. A., Sinai, Ya. G. and Chernov, N. I.. Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46(4) (1991), 47106.CrossRefGoogle Scholar
[5]Chernov, N. I., Eyink, G. L., Lebowitz, J. L. and Sinaĭ, Ya.. Steady-state electrical conduction in the periodic Lorentz gas. Comm. Math. Phys. 154(3) (1993), 569601.CrossRefGoogle Scholar
[6]Chernov, N. I. and Markarian, R.. Introduction to the ergodic theory of chaotic billiards. IMCA, Lima (2001), 2nd. edn., revised and enlarged. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2003.Google Scholar
[7]Chernov, N. I. and Markarian, R.. Chaotic Billiards (Mathematical Surveys and Monographs, 127). American Mathematical Society, Providence, RI, 2006, p. xii+316.CrossRefGoogle Scholar
[8]Chernov, N. I. and Markarian, R.. Dispersing billiards with cusps: slow decay of correlations. Comm. Math. Phys 270 (2007), 727758.CrossRefGoogle Scholar
[9]Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G.. Ergodic Theory. Springer, Berlin, 1982, original edn. 1980.CrossRefGoogle Scholar
[10]Dias Carneiro, M. J., Oliffson Kamphorst, S. and Pinto de Carvalho, S.. Periodic orbits of generic oval billiards. Nonlinearity 20 (2007), 24532462.Google Scholar
[11]Kerckhoff, S., Masur, H. and Smillie, J.. Ergodicity of billiard flows and quadratic differentials. Ann. of Math. (2) 124 (1986), 293311.Google Scholar
[12]Katok, A. and Strelcyn, J.-M.. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, New York, 1986.Google Scholar
[13]Liverani, C. and Wojtkowski, M.. Ergodicity in Hamiltonian Systems, Dynamics reported. Expositions Dynamic Systems (New Series) 4. Springer, Berlin, 1995, pp. 130–202 [SUNY Stony Brook Preprint #1992/16].Google Scholar
[14]Markarian, R.. Billiards with Pesin region of measure one. Comm. Math. Phys. 118 (1988), 8797.Google Scholar
[15]Markarian, R.. New ergodic billiards: exact results. Nonlinearity 6 (1993), 819841.Google Scholar
[16]Markarian, R.. Non-uniformly hyperbolic billiards. Ann. Fac. Sci. Toulouse (6) 3 (1994), 223257.CrossRefGoogle Scholar
[17]Mora, L. and Viana, M.. Abundance of strange attractors. Acta Math. 171 (1993), 171.Google Scholar
[18]Morales, C. A. and Pujals, E. R.. Singular strange attractors on the boundary of Morse–Smale systems. Ann. Sci. Éc. Norm. Supér. (4) 30 (1997), 693717.CrossRefGoogle Scholar
[19]Pujals, E. R. and Sambarino, M.. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. of Math. (2) 151 (2000), 9611023.Google Scholar
[20]Pujals, E. R. and Sambarino, M.. On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and variation of entropy. Nonlinearity 13 (2000), 921926.Google Scholar
[21]Pujals, E. R. and Sambarino, M.. On the dynamic of dominated splitting. Ann. of Math. (2) 169 (2009), 675740.CrossRefGoogle Scholar
[22]Sinai, Ya. G.. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russian Math. Surveys 25(1) (1970), 137189.Google Scholar
[23]Smale, S.. Structurally stable systems are not dense. Amer. J. Math. 88 (1966), 491496.Google Scholar
[24]Wojtkowski, M.. Principles for the design of billiards with nonvanishing Lyapunov exponents. Comm. Math. Phys. 105 (1986), 391414.CrossRefGoogle Scholar
[25]Wojtkowski, M.. Monotonicity, 𝒥-algebra of Potapov and Lyapunov exponents. Smooth Ergodic Theory and its Applications (Proceedings of Symposia in Pure Mathematics, 69). American Mathematical Society, Providence, RI, 2001, pp. 499521.CrossRefGoogle Scholar
[26]Wang, Q. and Young, L.-S.. Strange attractors with one direction of instability. Comm. Math. Phys. 218 (2001), 197.CrossRefGoogle Scholar