Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T18:03:18.553Z Has data issue: false hasContentIssue false

Poisson suspensions and infinite ergodic theory

Published online by Cambridge University Press:  01 April 2009

EMMANUEL ROY*
Affiliation:
Laboratoire Analyse Géométrie et Applications, UMR 7539, Université Paris 13, 99 avenue J.B. Clément, F-93430 Villetaneuse, France (email: roy@math.univ-paris13.fr)

Abstract

We investigate the ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure-preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite-measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaussian dynamical systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aaronson, J.. An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence, RI, 1997.Google Scholar
[2]Aaronson, J. and Nadkarni, M.. eigenvalues and L 2 spectra of non-singular transformations. Proc. London Math. Soc. 55 (1987), 538570.Google Scholar
[3]Ageev, O. N.. On ergodic transformations with homogeneous spectrum. J. Dyn. Control Syst. 5(1) (1999), 149152.Google Scholar
[4]Ageev, O. N.. On the spectrum of cartesian powers of classical automorphisms. Math. Notes 68(5–6) (2000), 547551.Google Scholar
[5]Daley, D. J. and Vere-Jones, D.. An Introduction to the Theory of Point Processes. Springer, New York, 1988.Google Scholar
[6]Derriennic, Y., Fra̧czek, K., Lemańczyk, M. and Parreau, F.. Ergodic automorphisms whose weak closure of off-diagonal measures consists of ergodic self-joinings. Colloq. Math. 110 (2008), 81115.Google Scholar
[7]Glasner, E.. Ergodic Theory via Joinings. American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
[8]Grabinsky, G.. Poisson process over σ-finite markov chains. Pacific J. Math. 2 (1984), 301315.Google Scholar
[9]Janvresse, E., Meyerovitch, T., de la Rue, T. and Roy, E.. Poisson suspensions and entropy for infinite transfromations. Preprint, 2008.CrossRefGoogle Scholar
[10]Krengel, U.. Entropy of conservative transformations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 7 (1967), 161181.CrossRefGoogle Scholar
[11]Krengel, U. and Sucheston, L.. On mixing in infinite measure spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 13 (1969), 150164.CrossRefGoogle Scholar
[12]Lemańczyk, M., Parreau, F. and Thouvenot, J.-P.. Gaussian automorphisms whose ergodic self-joinings are Gaussian. Fund. Math. 164 (2000), 253293.CrossRefGoogle Scholar
[13]Maruyama, G.. Infinitely divisible processes. Theory Probab. Appl. 15(1) (1970), 122.CrossRefGoogle Scholar
[14]Matthes, K., Kerstan, J. and Mecke, J.. Infinitely Divisible Point Processes. John Wiley and Sons, New York, 1978.Google Scholar
[15]Parreau, F. and Roy, E.. Poisson joinings of poisson suspensions. Preprint, 2008.Google Scholar
[16]Parry, W.. Entropy and Generators in Ergodic Theory. W. A. Benjamin, Inc., New York, 1969.Google Scholar
[17]Roy, E.. Mesures de Poisson, infinie divisibilité et propriétés ergodiques. PhD Thesis, Université Paris 6, 2005.Google Scholar
[18]Roy, E.. Ergodic properties of Poissonian ID processes. Ann. Probab. 35(2) (2007), 551576.CrossRefGoogle Scholar
[19]Sato, K.-I.. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, 1999.Google Scholar