Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T03:04:25.898Z Has data issue: false hasContentIssue false

Quasi-Markovian transformations

Published online by Cambridge University Press:  02 April 2001

ZBIGNIEW S. KOWALSKI
Affiliation:
Institute of Mathematics, Wrocław Technical University, Wybrzeże St. Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

Let $(f,\alpha)$ be the process given by an endomorphism $f$ and by a finite partition $\alpha=\{A\}_{i=1}^{s}$ of a Lebesgue space. Let $E(f,\alpha)$ be the set of densities of absolutely continuous invariant measures for skew products with the base $(f,\alpha)$. We prove that a process $(f,\alpha)$ is Markovian if and only if $E(f,\alpha)\subset \{g: g=\sum_{i=1}^{s} 1_{A_{i}}\otimes g_{i}\}$. If $f$ is the Lasota–Yorke or Misiurewicz type map with the Markovian partition $\alpha$, then $(f,\alpha)$ is quasi-Markovian, i.e. $E(f,\alpha)\subset \{g:\supp g=\bigcup_{i=1}^{s} A_{i}\times B_{i}\}$. Moreover, we give the characterization of quasi-Markovian processes.

Type
Research Article
Copyright
© 1997 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)