No CrossRef data available.
Article contents
Renormalization of circle maps and smoothness of Arnold tongues
Published online by Cambridge University Press: 24 February 2025
Abstract
We study the global behavior of the renormalization operator on a specially constructed Banach manifold that has cubic critical circle maps on its boundary and circle diffeomorphisms in its interior. As an application, we prove results on smoothness of irrational Arnold tongues.
MSC classification
Primary:
37E20: Universality, renormalization
37E10: Maps of the circle
37E45: Rotation numbers and vectors
Secondary:
37F25: Renormalization
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press
References
Ahlfors, L. and Bers, L.. Riemann mapping theorem for variable metrics. Ann. of Math. (2) 72 (1960), 385–404.CrossRefGoogle Scholar
de Faria, E. and de Melo, W.. Rigidity of critical circle mappings I. J. Eur. Math. Soc. (JEMS) 1(4) (1999), 339–392.CrossRefGoogle Scholar
de Faria, E. and de Melo, W.. Rigidity of critical circle mappings II. J. Amer. Math. Soc. (JAMS) 13(2) (2000), 343–370.CrossRefGoogle Scholar
de Faria, E., Guarino, P. and Nussenzveig, B.. Automorphic measures and invariant distributions for circle dynamics. Math. Z. 306 (2024), 26.CrossRefGoogle Scholar
de la Llave, R. and Luque, A.. Differentiability at the tip of Arnold tongues for Diophantine rotations: numerical studies and renormalization group explanations. J. Stat. Phys. 143 (2011), 1154–1188.CrossRefGoogle Scholar
de Melo, W. and Pugh, C.. The
${\mathrm{C}}^1$
Brunovsky hypothesis. J. Differential Equations 113 (1994), 330–337.Google Scholar

Douady, R. and Yoccoz, J.-C.. Nombre de rotation des difféomorphismes du cercle et mesures automorphes (rotation number of diffeomorphisms of the circle and automorphic measures). Regul. Chaotic Dyn. 4(4) (1999), 19–38.CrossRefGoogle Scholar
ElBialy, M..
${\mathrm{C}}^{\mathrm{k}}$
invariant manifolds for maps of Banach spaces. J. Math. Anal. Appl. 268(1) (2002), 1–24.CrossRefGoogle Scholar

Fagella, N. and Geyer, L.. Surgery on Herman rings of the complex standard family. Ergod. Th. & Dynam. Sys. 23(2) (2003), 493–508.CrossRefGoogle Scholar
Gorbovickis, I. and Yampolsky, M.. Rigidity, universality, and hyperbolicity of renormalization for critical circle maps with non-integer exponents. Ergod. Th. & Dynam. Sys. 40(5) (2020), 1282–1334.CrossRefGoogle Scholar
Goncharuk, N. and Yampolsky, M.. Analytic linearization of conformal maps of the annulus. Adv. Math. 409(Part A) (2022), 108636.CrossRefGoogle Scholar
Mestel, B. D.. A computer assisted proof of universality for cubic critical maps of the circle with golden mean rotation number. PhD Thesis, University of Warwick, 1985.Google Scholar
Risler, E.. Linéarisation des perturbations holomorphes des rotations et applications. Mém. Soc. Math. Fr. (N.S.) 77 (1999), III1–VII102.Google Scholar
Shishikura, M.. The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. of Math. (2) 147(2) (1998), 225–267.CrossRefGoogle Scholar
Slammert, L..
${\mathrm{C}}^1$
smoothness of Liouville arcs in Arnol’d tongues. Proc. Amer. Math. Soc. 129(6) (2001), 1817–1823.CrossRefGoogle Scholar

Yampolsky, M.. Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Études Sci. 96 (2003), 1–41.CrossRefGoogle Scholar
Yampolsky, M.. Renormalization horseshoe for critical circle maps. Comm. Math. Phys. 240 (2003), 75–96.CrossRefGoogle Scholar
Yoccoz, J.-C.. Théorème de Siegel, nombres de Bruno et polynômes quadratiques. in Petits diviseurs en dimension 1, S.M.F. Astérisque 231 (1995), 1–88.Google Scholar
Yoccoz, J.-C.. Analytic linearization of circle diffeomorphisms. Dynamical Systems and Small Divisors (Lecture Notes in Mathematics, 1784). Ed. Marmi, S. and Yoccoz, J.-C.. Springer, Berlin, 2002, pp. 125–173.Google Scholar