Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T08:51:36.438Z Has data issue: false hasContentIssue false

Robustly expansive homoclinic classes

Published online by Cambridge University Press:  22 December 2004

M. J. PACIFICO
Affiliation:
Instituto de Matematica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, R. J., Brazil (e-mail: pacifico@im.ufrj.br and enrique@im.ufrj.br)
E. R. PUJALS
Affiliation:
Instituto de Matematica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, R. J., Brazil (e-mail: pacifico@im.ufrj.br and enrique@im.ufrj.br)
J. L. VIEITEZ
Affiliation:
Instituto de Matematica, Facultad de Ingenieria, Universidad de la Republica, CC30, CP 11300, Montevideo, Uruguay (e-mail: jvieitez@fing.edu.uy)

Abstract

Let $f: M \to M$ be a diffeomorphism defined in a three-dimensional compact boundary-less manifold M. We prove that for an open dense set, C1-robustly expansive homoclinic classes H(p) for f are hyperbolic. A diffeomorphism f is $\alpha$-expansive on a compact invariant set K if there is $\alpha>0$ such that for all $x,y\in K$, if ${\rm dist}(f^n(x),f^n(y))\leq \alpha$ for all $n\in \mathbb Z$ then x = y. By ‘robustly’ we mean that there is $\alpha>0$ such that for all nearby diffeomorphisms g, the homoclinic class H(pg) of the continuation of p is $\alpha$-expansive.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)