Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T22:44:40.605Z Has data issue: false hasContentIssue false

Accuracy of Kepler approximation for fly-by orbits near an attracting centre

Published online by Cambridge University Press:  19 September 2008

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the study of the motion of a particle with negligible mass in the gravitational field created by other bodies (for example, the motion of the comet within the Solar system) it is natural to decompose its trajectory into regular and singular parts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

[1]Aлekceeв, B. M.. К Teopии возмущенного движения. Acrp. жyph. 38, 4 (1961) 726737.Google Scholar
[2] B. H. Бopoдoвcк;ий. Πpимeнeниe ocкyлиpyюших злeмeнтов пpи тepминaльном yпpaвлeнии лвижeниeм КА. Кocм. 13, 5 (1975) 645650.CrossRefGoogle Scholar
[3] Г. H. Дyбошин. Небесная механика ОсновньІе задачи и мeтодьІ. M.: Hayka (1975).Google Scholar
[4] M. Д. КиCлик Cфeры влияния больших планет И Луны. Косм. 2, 6 (1964) 853.Google Scholar
[5] Cправочное руководство по небесной механике и астролинамн (под ред Г. H. ДубошиНа) M.:Hayka (1976).Google Scholar
[6]Breakwell, J. V. and Perko, L. M.. Matched asymptotic expansions, patched conies and the computation of interplanetary trajectories. Proc. XIV Int. Astronautical Congr., Springer: Berlin 1965, pp. 4359.Google Scholar
[7]Guillaume, P.. The restricted problem: an extension of Breakwell-Perko's matching theory. Celestial Mech. 11 (1975) 449467.CrossRefGoogle Scholar
[8]Perko, L. M.. Asymptotic matching in the restricted three body problem. Doctoral dissertation. Stanford Univ. (1964).Google Scholar