Published online by Cambridge University Press: 19 December 2018
Let $\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$ and $\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$, where $p_{n}/q_{n}$ is the continued fraction approximation to $\unicode[STIX]{x1D6FC}$. Let $(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$ be the almost Mathieu operator on $\ell ^{2}(\mathbb{Z})$, where $\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$. Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170(1) (2009), 303–342] conjectured that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$, $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$. In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$, $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$.