Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T20:22:18.719Z Has data issue: false hasContentIssue false

Arithmeticity of hyperbolic $3$-manifolds containing infinitely many totally geodesic surfaces

Published online by Cambridge University Press:  22 April 2021

AMIR MOHAMMADI*
Affiliation:
Department of Mathematics, The University of California, San Diego, CA92093, USA
GREGORII MARGULIS
Affiliation:
Mathematics Department, Yale University, PO Box 208283, New Haven, CT06520, USA (e-mail: gregorii.margulis@yale.edu)

Abstract

We prove that if a closed hyperbolic $3$ -manifold M contains infinitely many totally geodesic surfaces, then M is arithmetic.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In memory of Anatole Katok

References

Bader, U., Fisher, D., Miller, N. and Stover, M.. Arithmeticity, superrigidity, and totally geodesic submanifolds. Preprint, 2019, arXiv:1903.08467.Google Scholar
Benoist, Y. and Quint, J.-F.. Random Walks on Reductive Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 62). Springer, Cham, 2016.CrossRefGoogle Scholar
Benoist, Y. and Quint, J.-F.. Stationary measures and invariant subsets of homogeneous spaces (III). Ann. of Math. 178 (2013), 10171059.CrossRefGoogle Scholar
Berger, M. A.. Central limit theorem for products of random matrices. Trans. Amer. Math. Soc. 285(2) (1984), 777803.CrossRefGoogle Scholar
Borel, A. and Prasad, G.. Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups. Publ. Math. Inst. Hautes Études Sci. 69 (1989), 119171.CrossRefGoogle Scholar
Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-Positive Curvature (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319). Springer, Berlin, 1999.CrossRefGoogle Scholar
Carathéodory, C.. The most general transformations of plane regions which transform circles into circles. Bull. Amer. Math. Soc. 43(8) (1937), 573579.CrossRefGoogle Scholar
Chow, Y. S.. A martingale inequality and the law of large numbers. Proc. Amer. Math. Soc. 11 (1960), 107111.CrossRefGoogle Scholar
Corlette, K.. Archimedean superrigidity and hyperbolic geometry. Ann. of Math. 135(1) (1992), 165182.CrossRefGoogle Scholar
Cornulier, Y.. On sublinear bilipschitz equivalence of groups. Ann. Sci. Éc. Norm. Supér. 52 (2019), 12011242.CrossRefGoogle Scholar
Delp, K., Hoffoss, D. and Manning, J. F.. Problems in groups, geometry, and three-manifolds. Preprint, 2015, arXiv:1512.04620.Google Scholar
Eskin, A., Margulis, G. and Mozes, S.. Upper bounds and asymptotics in a quantitative version of the oppenheim conjecture. Ann. of Math. 147(1) (1998), 93141.CrossRefGoogle Scholar
Fazekas, I. and Klesov, O.. A general approach to the strong laws of large numbers. Teor. Veroyatn. Primen. 45(3) (2000), 568583.CrossRefGoogle Scholar
Fisher, D., Lafont, J. F., Miller, N. and Stover, M.. Finiteness of maximal geodesic submanifolds in hyperbolic hybrids. Preprint, 2018, arXiv:1802.04619.Google Scholar
Furstenberg, H. and Kesten, H.. Products of random matrices. Ann. Math. Statist. 31(2) (1960), 457469.CrossRefGoogle Scholar
Furstenberg, H.. A poisson formula for semi-simple Lie groups. Ann. of Math. 77(2) (1963), 335386.CrossRefGoogle Scholar
Furstenberg, H.. Boundary theory and stochastic processes on homogeneous spaces. Harmonic Analysis on Homogeneous Spaces (Proceedings of Symposia in Pure Mathematics, XXVI, Williams College, Williamstown, MA, 1972). American Mathematical Society, Providence, RI, 1973, pp. 193229.CrossRefGoogle Scholar
Garland, H. and Raghunathan, M. S.. Fundamental domains for lattices in (r-) rank 1 semisimple Lie groups. Ann. of Math. 92(2) (1970), 279326.CrossRefGoogle Scholar
Gibbons, J. and Webb, C.. Circle-preserving functions of spheres. Trans. Amer. Math. Soc. 248(1) (1979), 6783.CrossRefGoogle Scholar
Goldsheid, I. Y. and Margulis, G. A.. Lyapunov exponents of a product of random matrices. Uspekhi Mat. Nauk 44(5(269)) (1989), 1360.Google Scholar
Gromov, M. and Schoen, R.. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. Math. Inst. Hautes Études Sci. 76(1) (1992), 165246.CrossRefGoogle Scholar
Guivarc’h, A.. Quelques proprietes asymptotiques des produits de matrices aleatoires. Ecole d’Eté de Probabilités de Saint-Flour VIII-1978 (Berlin, Heidelberg). Ed. Hennequin, P. L.. Springer, Berlin, 1980, pp. 177250.Google Scholar
Hájek, J. and Rényi, A.. Generalization of an inequality of Kolmogorov. Acta Math. Acad. Sci. Hungar. 6 (1955), 281283.CrossRefGoogle Scholar
Karlsson, A. and Margulis, G. A.. A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys. 208(1) (1999), 107123.CrossRefGoogle Scholar
Loève, M.. Probability Theory. Foundations. Random Sequences, D. Van Nostrand, Toronto, 1955.Google Scholar
Maclachlan, C. and Reid, A. W.. The Arithmetic of Hyperbolic 3-Manifolds (Graduate Texts in Mathematics, 219). Springer, New York, NY, 2003.CrossRefGoogle Scholar
Margulis, G. and Mohammadi, A.. Arithmeticity of hyperbolic 3-manifolds containing infinitely many totally geodesic surfaces. Preprint, 2019, arXiv:1902.07267v1.Google Scholar
Margulis, G. A.. Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than $1$ , Invent. Math. 76(1) (1984), 93120.CrossRefGoogle Scholar
Margulis, G. A.. Discrete Subgroups of Semisimple Lie Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17). Springer, Berlin, 1991.CrossRefGoogle Scholar
McReynolds, D. B. and Reid, A. W.. The genus spectrum of hyperbolic 3-manifolds. Math. Res. Lett. 21 (2014), 169185.CrossRefGoogle Scholar
Mozes, S. and Shah, N.. On the space of ergodic invariant measures of unipotent flows. Ergod. Th. & Dynam. Sys. 15(1) (1995), 149159.CrossRefGoogle Scholar
Reid, A.. Totally geodesic surfaces in hyperbolic 3-manifolds. Proc. Edinb. Math. Soc. 34 (1991), 7788.CrossRefGoogle Scholar
Selberg, A.. On Discontinuous Groups in Higher-Dimensional Symmetric Spaces, Contributions to Function Theory (International Colloquium on Function Theory, Bombay, 1960). Tata Institute of Fundamental Research, Bombay, 1960, pp. 147164.Google Scholar
Siegel, C. L.. Discontinuous groups. Ann. of Math. (2) 44 (1943), 674689.CrossRefGoogle Scholar
Weil, A.. On discrete subgroups of Lie groups. Ann. of Math. 72(2) (1960), 369384.CrossRefGoogle Scholar
Weil, A.. Remarks on the cohomology of groups. Ann. of Math. 80(1) (1964), 149157.CrossRefGoogle Scholar