Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T06:56:44.992Z Has data issue: false hasContentIssue false

Asymptotic size of Herman rings of the complex standard family by quantitative quasiconformal surgery

Published online by Cambridge University Press:  04 May 2004

NÚRIA FAGELLA
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain (e-mail: fagella@maia.ub.es)
TERE M. SEARA
Affiliation:
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain (e-mail: tere.m-seara@upc.es, jordi@vilma.upc.es)
JORDI VILLANUEVA
Affiliation:
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain (e-mail: tere.m-seara@upc.es, jordi@vilma.upc.es)

Abstract

In this paper we consider the complexification of the Arnold standard family of circle maps given by $\widetilde F_{\alpha,\epsilon}(u)=ue^{i\alpha} e^{({\epsilon}/{2}) (u-{1}/{u})}$, with $\alpha=\alpha(\epsilon)$ chosen so that $\widetilde F_{\alpha(\epsilon),\epsilon}$ restricted to the unit circle has a prefixed rotation number $\theta$ belonging to the set of Brjuno numbers. In this case, it is known that $\widetilde F_{\alpha(\epsilon),\epsilon}$ is analytically linearizable if $\epsilon$ is small enough and so it has a Herman ring $\widetilde U_{\epsilon}$ around the unit circle. Using Yoccoz's estimates, one has that the size$\widetilde R_\epsilon$ of $\widetilde U_{\epsilon}$ (so that $\widetilde U_{\epsilon}$ is conformally equivalent to $\{u\in{\mathbb C}: 1/\widetilde R_\epsilon < |u| < \widetilde R_\epsilon\}$) goes to infinity as $\epsilon\to 0$, but one may ask for its asymptotic behavior.

We prove that $\widetilde R_\epsilon=({2}/{\epsilon})(R_0+\mathcal{O}(\epsilon\log\epsilon))$, where R0 is the conformal radius of the Siegel disk of the complex semistandard map $G(z)=ze^{i\omega}e^z$, where $\omega= 2\pi\theta$. In the proof we use a very explicit quasiconformal surgery construction to relate $\widetilde F_{\alpha(\epsilon),\epsilon}$ and G, and hyperbolic geometry to obtain the quantitative result.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)