Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T04:33:17.063Z Has data issue: false hasContentIssue false

Bernoulliness of $[T,\text{Id}]$ when $T$ is an irrational rotation: towards an explicit isomorphism

Published online by Cambridge University Press:  24 April 2020

CHRISTOPHE LEURIDAN*
Affiliation:
Université Grenoble Alpes, Institut Fourier, Saint-Martin-d’Héres, 38400, France email christophe.leuridan@univ-grenoble-alpes.fr

Abstract

Let $\unicode[STIX]{x1D703}$ be an irrational real number. The map $T_{\unicode[STIX]{x1D703}}:y\mapsto (y+\unicode[STIX]{x1D703})\!\hspace{0.6em}{\rm mod}\hspace{0.2em}1$ from the unit interval $\mathbf{I}= [\!0,1\![$ (endowed with the Lebesgue measure) to itself is ergodic. In a short paper [Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys.16 (1996), 519–529] published in 1996, Parry provided an explicit isomorphism between the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift when $\unicode[STIX]{x1D703}$ is extremely well approximated by the rational numbers, namely, if

$$\begin{eqnarray}\inf _{q\geq 1}q^{4}4^{q^{2}}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$
A few years later, Hoffman and Rudolph [Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2)156 (2002), 79–101] showed that for every irrational number, the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ is isomorphic to the unilateral dyadic Bernoulli shift. Their proof is not constructive. In the present paper, we relax notably Parry’s condition on $\unicode[STIX]{x1D703}$: the explicit map provided by Parry’s method is an isomorphism between the map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift whenever
$$\begin{eqnarray}\inf _{q\geq 1}q^{4}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$
This condition can be relaxed again into
$$\begin{eqnarray}\inf _{n\geq 1}q_{n}^{3}~(a_{1}+\cdots +a_{n})~|q_{n}\unicode[STIX]{x1D703}-p_{n}|<+\infty ,\end{eqnarray}$$
where $[0;a_{1},a_{2},\ldots ]$ is the continued fraction expansion and $(p_{n}/q_{n})_{n\geq 0}$ the sequence of convergents of $\Vert \unicode[STIX]{x1D703}\Vert :=\text{dist}(\unicode[STIX]{x1D703},\mathbb{Z})$. Whether Parry’s map is an isomorphism for every $\unicode[STIX]{x1D703}$ or not is still an open question, although we expect a positive answer.

Type
Original Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. L. and Shields, P. C.. Skew products of Bernoulli shifts with rotations. Israel J. Math. 12 (1972), 215222.CrossRefGoogle Scholar
Adler, R. L. and Shields, P. C.. Skew products of Bernoulli shifts with rotations. Israel J. Math. 19 (1974), 228236.CrossRefGoogle Scholar
Feldman, J.. New K-automorphisms and a problem of Kakutani. Israel J. Math. 24(1) (1976), 1638.CrossRefGoogle Scholar
Feldman, J. and Rudolph, D.. Standardness of sequences of 𝜎-fields given by certain endomorphisms. Fund. Math. 157 (1998), 175189.CrossRefGoogle Scholar
Heicklen, D. and Hoffman, C.. [T, T -1] is not standard. Ergod. Th. & Dynam. Sys. 18(4) (1998), 875878.CrossRefGoogle Scholar
Hoffman, C. and Rudolph, D.. Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2) 156 (2002), 79101.CrossRefGoogle Scholar
Hoffman, C. and Rudolph, D.. A dyadic endomorphism which is Bernoulli but not standard. Israel J. Math. 130 (2002), 365379.CrossRefGoogle Scholar
Kalikow, S.. T, T -1 transformation is not loosely Bernoulli. Ann. of Math. (2) 115(2) (1982), 393409.CrossRefGoogle Scholar
Khintchine, A.. Metrische Kettenbruchprobleme. Compos. Math. 1 (1935), 361382.Google Scholar
Laurent, S.. Filtrations à temps discret négatif. PhD Thesis, Université de Strasbourg, Strasbourg, 2004.Google Scholar
Leuridan, C.. Filtration d’une marche aléatoire stationnaire sur le cercle. Séminaire de Probabilités XXXVI (Lecture Notes in Mathematics, 1801) . Eds. Azéma, J., Émery, M., Ledoux, M. and Yor, M.. Springer, Berlin, 2002, pp. 335347.Google Scholar
Leuridan, C.. Filtrations associated to some two-to-one transformations. Séminaire de Probabilités LI. Springer, Berlin, to be published.Google Scholar
Leuridan, C.. Characterizations of convergents and semi-convergents in continued fraction expansions, in preparation. French version submited and available on https://hal.archives-ouvertes.fr/hal-02272389.Google Scholar
Marklof, J. and Strömbergsson, A.. The three gap theorem and the space of lattices. Amer. Math. Monthly 124(8) (2017), 741745.CrossRefGoogle Scholar
Meilijson, I.. Mixing properties of a class of skew-products. Israel J. Math. 19 (1974), 266270.CrossRefGoogle Scholar
Parry, W.. Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys. 16 (1996), 519529.CrossRefGoogle Scholar
Resnick, S. I.. A Probability Path. Birkhäuser, Basel, 2014, reprint of the 2005 edition.CrossRefGoogle Scholar
Sós, V. T.. On the distribution mod 1 of the sequence n𝛼. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 127134.Google Scholar
Surányi, J.. Über die Anordnung der Vielfachen einer reellen Zahl mod 1. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), 107111.Google Scholar
Świerczkowski, S.. On successive settings of an arc on the circumference of a circle. Fund. Math. 46(2) (1959), 187189.CrossRefGoogle Scholar
Vershik, A. M.. Decreasing sequences of measurable partitions, and their applications. Dokl. Akad. Nauk SSSR 193 (1970), 748751; Engl. transl. Soviet Math. Dokl. 11 (1970), 1007–1011.Google Scholar