Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T08:44:53.033Z Has data issue: false hasContentIssue false

Birkhoff sum fluctuations in substitution dynamical systems

Published online by Cambridge University Press:  07 September 2017

ELLIOT PAQUETTE
Affiliation:
Department of Mathematics, The Ohio State University, USA email paquette.30@osu.edu
YOUNGHWAN SON
Affiliation:
Department of Mathematics, POSTECH, Korea email yhson@postech.ac.kr

Abstract

We consider the deviation of Birkhoff sums along fixed orbits of substitution dynamical systems. We show distributional convergence for the Birkhoff sums of eigenfunctions of the substitution matrix. For non-coboundary eigenfunctions with eigenvalue of modulus $1$, we obtain a central limit theorem. For other eigenfunctions, we show convergence to distributions supported on Cantor sets. We also give a new criterion for such an eigenfunction to be a coboundary, as well as a new characterization of substitution dynamical systems with bounded discrepancy.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczewski, B.. Symbolic discrepancy and self-similar dynamics. Ann. Inst. Fourier (Grenoble) 54(7) (2004), 22012234.Google Scholar
Avila, A., Dolgopyat, D., Duryev, E. and Sarig, O.. The visits to zero of a random walk driven by an irrational rotation. Israel J. Math. 207(2) (2015), 653717.Google Scholar
Bressaud, X., Bufetov, A. I. and Hubert, P.. Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1. Proc. Lond. Math. Soc. (3) 109(2) (2014), 483522.Google Scholar
Beck, J.. Randomness of the square root of 2 and the giant leap. Part 1. Period. Math. Hungar. 60(2) (2010), 137242.Google Scholar
Beck, J.. Randomness of the square root of 2 and the giant leap. Part 2. Period. Math. Hungar. 62(2) (2011), 127246.Google Scholar
Boyle, M. and Handelman, D.. The spectra of nonnegative matrices via symbolic dynamics. Ann. of Math. (2) 133(2) (1991), 249316.Google Scholar
Bufetov, A. I.. Finitely-additive measures on the asymptotic foliations of a Markov compactum. Mosc. Math. J. 14(2) (2014), 205224, 426.Google Scholar
Canterini, V. and Siegel, A.. Automate des préfixes–suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13(2) (2001), 353369.Google Scholar
Durand, F., Host, B. and Skau, C.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953993.Google Scholar
Dudley, R. M.. Convergence of Baire measures. Studia Math. 27 (1966), 251268.Google Scholar
Pytheas Fogg, N.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794) . Eds. Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A.. Springer, Berlin, 2002.Google Scholar
Gottschalk, W. H. and Hedlund, G. A.. Topological dynamics. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1955, p. 36.Google Scholar
Hall, P. and Heyde, C. C.. Martingale Limit Theory and its Application (Probability and Mathematical Statistics) . Academic Press [Harcourt Brace Jovanovich], New York, London, 1980.Google Scholar
Host, B.. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Th. & Dynam. Sys. 6(4) (1986), 529540.Google Scholar
Ito, S.. A construction of transversal flows for maximal Markov automorphisms. Tokyo J. Math. 1(2) (1978), 305324.Google Scholar
Kornfeld, I. and Lin, M.. Coboundaries of irreducible Markov operators on C (K). Israel J. Math. 97 (1997), 189202.Google Scholar
Klenke, A.. Probability Theory: A Comprehensive Course, 2nd edn. Universitext. Springer, London, 2014.Google Scholar
Kim, K. H., Ormes, N. S. and Roush, F. W.. The spectra of nonnegative integer matrices via formal power series. J. Amer. Math. Soc. 13(4) (2000), 773806 (electronic).Google Scholar
Kipnis, C. and Varadhan, S. R. S.. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104(1) (1986), 119.Google Scholar
Livshits, A. N.. Sufficient conditions for weak mixing of substitutions and of stationary adic transformations. Mat. Zametki 44(6) (1988), 785793, 862.Google Scholar
Levin, D. A., Peres, Y. and Wilmer, E. L.. Markov Chains and Mixing Times. Eds. Propp, J. G. and Wilson, D. B.. American Mathematical Society, Providence, RI, 2009.Google Scholar
Mossé, B.. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327334.Google Scholar
Mossé, B.. Reconnaissabilité des substitutions et complexité des suites automatiques. Bull. Soc. Math. France 124(2) (1996), 329346.Google Scholar
Maxwell, M. and Woodroofe, M.. Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28(2) (2000), 713724.Google Scholar
Parry, W.. Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5566.Google Scholar
Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294) , 2nd edn. Springer, Berlin, 2010.Google Scholar
Sarig, O. and Schmoll, M.. Adic flows, transversal flows, and horocycle flows. Ergodic Theory and Dynamical Systems (De Gruyter Procedings in Mathematics) . De Gruyter, Berlin, 2014, pp. 241259.Google Scholar
Stout, W. F.. A martingale analogue of Kolmogorov’s law of the iterated logarithm. Z. Wahrscheinlichkeitsth. Verw. Geb. 15 (1970), 279290.Google Scholar
Vershik, A. M.. The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) (Teor. Predstav. Din. Sistemy Kombin. i Algoritm. Metody. I) 223 (1995), 120126, 338.Google Scholar