Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T13:00:00.728Z Has data issue: false hasContentIssue false

A class of simple C*-algebras arising from certain non-sofic subshifts

Published online by Cambridge University Press:  11 February 2010

KENGO MATSUMOTO*
Affiliation:
Department of Mathematical Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan (email: kengo@yokohama-cu.ac.jp)

Abstract

We present a class of subshifts ZN,N=1,2,…, whose associated C*-algebras 𝒪ZN are simple, purely infinite and not stably isomorphic to any Cuntz–Krieger algebra nor to the Cuntz algebra 𝒪. The class of the subshifts is the first example whose associated C*-algebras are not stably isomorphic to any Cuntz–Krieger algebra nor to the Cuntz algebra 𝒪. The subshifts ZN are coded systems whose languages are context free. We compute the topological entropy for the subshifts and show that a KMS-state (a state satisfying the Kubo–Martin–Schwinger condition) for gauge action on the associated C*-algebra 𝒪ZN exists if and only if the logarithm of the inverse temperature is the topological entropy for the subshift ZN, and the corresponding KMS-state is unique.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Béal, M. P.. Codage Symbolique. Masson, Paris, 1993.Google Scholar
[2]Blanchard, F. and Hansel, G.. Systems codés. Theoret. Comput. Sci. 44 (1986), 1749.CrossRefGoogle Scholar
[3]Bowen, R. and Franks, J.. Homology for zero-dimensional non-wandering sets. Ann. of Math. (2) 106 (1977), 7392.Google Scholar
[4]Carlesen, T. M. and Matsumoto, K.. Some remarks on the C *-algebras associated with subshifts. Math. Scand. 95 (2004), 145160.CrossRefGoogle Scholar
[5]Chomsky, N. and Schützenberger, M. P.. The algebraic theory of context-free languages. Computer Programing and Formal Systems. North-Holland, Amsterdam, 1963, pp. 118161.CrossRefGoogle Scholar
[6]Cuntz, J.. Simple C *-algebras generated by isometries. Comm. Math. Phys. 57 (1977), 173185.CrossRefGoogle Scholar
[7]Cuntz, J.. A class of C *-algebras and topological Markov chains II: reducible chains and the Ext-functor for C *-algebras. Invent. Math. 63 (1980), 2540.CrossRefGoogle Scholar
[8]Cuntz, J.. K-theory for certain C *-algebras. Ann. of Math. (2) 113 (1981), 181197.CrossRefGoogle Scholar
[9]Cuntz, J. and Krieger, W.. A class of C *-algebras and topological Markov chains. Invent. Math. 56 (1980), 251268.CrossRefGoogle Scholar
[10]Enomoto, M., Fujii, M. and Watatani, Y.. KMS states for gauge action on 𝒪A. Math. Japan 29 (1984), 607619.Google Scholar
[11]Fischer, R.. Sofic systems and graphs. Monatsh. Math. 80 (1975), 179186.CrossRefGoogle Scholar
[12]Franks, J.. Flow equivalence of subshifts of finite type. Ergod. Th. & Dynam. Sys. 4 (1984), 5366.CrossRefGoogle Scholar
[13]Hopcroft, J. E. and Ullman, J. D.. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, MA, 2001.Google Scholar
[14]Katayama, Y., Matsumoto, K. and Watatani, Y.. Simple C *-algebras arising from β-expansion of real numbers. Ergod. Th. & Dynam. Sys. 18 (1998), 937962.CrossRefGoogle Scholar
[15]Kirchberg, E.. The classification of purely infinite C *-algebras using Kasparov’s theory. Preprint, 1994.Google Scholar
[16]Kitchens, B. P.. Symbolic Dynamics. Springer, Berlin, 1998.CrossRefGoogle Scholar
[17]Krieger, W.. On sofic systems I. Israel J. Math. 48 (1984), 305330.CrossRefGoogle Scholar
[18]Krieger, W.. On sofic systems II. Israel J. Math. 60 (1987), 167176.CrossRefGoogle Scholar
[19]Krieger, W.. On certain one-counter shifts. Preprint, 2009.Google Scholar
[20]Krieger, W. and Matsumoto, K.. Shannon graphs, subshifts and lambda-graph systems. J. Math. Soc. Japan 54 (2002), 877900.CrossRefGoogle Scholar
[21]Krieger, W. and Matsumoto, K.. A lambda-graph system for the Dyck shift and its K-groups. Doc. Math. 8 (2003), 7996.CrossRefGoogle Scholar
[22]Krieger, W. and Matsumoto, K.. Subshifts and C *-algberas from one-counter codes. Contemp. Math. 503 (2009).CrossRefGoogle Scholar
[23]Laca, M. and Neshveyev, S.. KMS-states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211 (2004), 457482.CrossRefGoogle Scholar
[24]Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[25]Matsumoto, K.. On C *-algebras associated with subshifts. Internat. J. Math. 8 (1997), 357374.CrossRefGoogle Scholar
[26]Matsumoto, K.. K-theory for C *-algebras associated with subshifts. Math. Scand. 82 (1998), 237255.CrossRefGoogle Scholar
[27]Matsumoto, K.. A simple C *-algebra arising from certain subshift. J. Operator Theory 42 (1999), 351370.Google Scholar
[28]Matsumoto, K.. Dimension groups for subshifts and simplicity of the associated C*-algebras. J. Math. Soc. Japan 51 (1999), 679698.CrossRefGoogle Scholar
[29]Matsumoto, K.. Presentations of subshifts and their topological conjugacy invariants. Doc. Math. 4 (1999), 285340.CrossRefGoogle Scholar
[30]Matsumoto, K.. Relations among generators of C *-algebras associated with subshifts. Internat. J. Math. 10 (1999), 385405.CrossRefGoogle Scholar
[31]Matsumoto, K.. Bowen–Franks groups for subshifts and Ext-groups for C*-algebras. K-Theory 23 (2001), 67104.CrossRefGoogle Scholar
[32]Matsumoto, K.. Bowen–Franks groups as an invariant for flow equivalence of subshifts. Ergod. Th. & Dynam. Sys. 21 (2001), 18311842.CrossRefGoogle Scholar
[33]Matsumoto, K.. C*-algebras associated with presentations of subshifts. Doc. Math. 7 (2002), 130.Google Scholar
[34]Matsumoto, K.. A simple purely infinite C *-algebra associated with a lambda-graph system of the Motzkin shift. Math. Z. 248 (2004), 369394.CrossRefGoogle Scholar
[35]Matsumoto, K.. Construction and pure infniteness of C *-algebra associated with lambda-graph systems. Math. Scand. 97 (2005), 7389.CrossRefGoogle Scholar
[36]Matsumoto, K.. On the simple C *-algebras arising from Dyck systems. J. Operator Theory 58 (2007), 205226.Google Scholar
[37]Matsumoto, K., Watatani, Y. and Yoshida, M.. KMS-states for gauge actions on C *-algebras associated with subshifts. Math. Z. 228 (1998), 489509.CrossRefGoogle Scholar
[38]Parry, W. and Sullivan, D.. A topological invariant for flows on one-dimensional spaces. Topology 14 (1975), 297299.CrossRefGoogle Scholar
[39]Pinzari, C., Watatani, Y. and Yoshida, K.. KMS-states, entropy and the variational principle in full C *-dynamical systems. Comm. Math. Phys. 213 (2000), 231379.CrossRefGoogle Scholar
[40]Phillips, N. C.. A classification theorem for nuclear purely infinite simple C *-algebras. Doc. Math. 5 (2000), 49114.Google Scholar
[41]Rødom, M.. Classification of Cunzt–Krieger algebras. K-Theory 9 (1995), 3158.Google Scholar
[42]Rødom, M.. Classification of purely infinite simple C *-algebras I. J. Funct. Anal. 131 (1995), 415458.Google Scholar
[43]Weiss, B.. Subshifts of finite type and sofic systems. Monatsh. Math. 77 (1973), 462474.CrossRefGoogle Scholar