Published online by Cambridge University Press: 22 July 2015
For each  
 $n=1,2,\ldots ,$  let  
 $\text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}$  be the affine group over the integers. For every point  
 $x=(x_{1},\ldots ,x_{n})\in \mathbb{R}^{n}$  let  
 $\text{orb}(x)=\{\unicode[STIX]{x1D6FE}(x)\in \mathbb{R}^{n}\mid \unicode[STIX]{x1D6FE}\in \text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}\}.$  Let  
 $G_{x}$  be the subgroup of the additive group  
 $\mathbb{R}$  generated by  
 $x_{1},\ldots ,x_{n},1$ . If  
 $\text{rank}(G_{x})\neq n$  then  
 $\text{orb}(x)=\{y\in \mathbb{R}^{n}\mid G_{y}=G_{x}\}$ . Thus,  
 $G_{x}$  is a complete classifier of  
 $\text{orb}(x)$ . By contrast, if  
 $\text{rank}(G_{x})=n$ , knowledge of  
 $G_{x}$  alone is not sufficient in general to uniquely recover  
 $\text{orb}(x)$ ; as a matter of fact,  
 $G_{x}$  determines precisely  
 $\max (1,\unicode[STIX]{x1D719}(d)/2)$  different orbits, where  
 $d$  is the denominator of the smallest positive non-zero rational in  
 $G_{x}$  and  
 $\unicode[STIX]{x1D719}$  is the Euler function. To get a complete classification, rational polyhedral geometry provides an integer  
 $1\leq c_{x}\leq \max (1,d/2)$  such that  
 $\text{orb}(y)=\text{orb}(x)$  if and only if  
 $(G_{x},c_{x})=(G_{y},c_{y})$ . Applications are given to lattice-ordered abelian groups with strong unit and to AF  
 $C^{\ast }$ -algebras.