Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T20:33:06.972Z Has data issue: false hasContentIssue false

Commuting pairs of endomorphisms of $\mathbb{P}^{2}$

Published online by Cambridge University Press:  19 September 2016

LUCAS KAUFMANN*
Affiliation:
Sorbonne Universités, UPMC Université – Paris 6, IMJ-PRG, UMR 7586 CNRS, 4 place Jussieu, F-75005, Paris, France email lucas.kaufmann@imj-prg.fr

Abstract

We consider commuting pairs of holomorphic endomorphisms of $\mathbb{P}^{2}$ with disjoint sequence of iterates. The case that has not been completely studied is when their degrees coincide after some number of iterations. We show in this case that they are either commuting Lattès maps or commuting homogeneous polynomial maps of $\mathbb{C}^{2}$ inducing a Lattès map on the line at infinity.

Type
Original Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, H.. Holomorphic mappings from the ball and polydisc. Math. Ann. 209 (1974), 249256.CrossRefGoogle Scholar
Briend, J.-Y. and Duval, J.. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de P k (C). Publ. Math. Inst. Hautes Études Sci. 93 (2001), 145159.Google Scholar
Berteloot, F. and Dupont, C.. Une caractérisation des endomorphismes de Lattès par leur mesure de Green. Comment. Math. Helv. 80(2) (2005), 433454.Google Scholar
Briend, J.-Y. and Duval, J.. Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de CP k . Acta Math. 182(2) (1999), 143157.Google Scholar
Berteloot, F. and Loeb, J.-J.. Une caractérisation géométrique des exemples de Lattès de ℙ k . Bull. Soc. Math. France 129(2) (2001), 175188.Google Scholar
Cerveau, D. and Lins Neto, A.. Hypersurfaces exceptionnelles des endomorphismes de CP(n). Bol. Soc. Brasil. Mat. (N.S.) 31(2) (2000), 155161.Google Scholar
Dujardin, R. and Guedj, V.. Geometric properties of maximal psh functions. Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics (Lecture Notes in Mathematics, 2038) . Springer, Heidelberg, 2012, pp. 3352.Google Scholar
Dinh, T.-C.. Sur les applications de Lattès de ℙ k . J. Math. Pures Appl. (9) 80(6) (2001), 577592.Google Scholar
Dinh, T.-C. and Sibony, N.. Sur les endomorphismes holomorphes permutables de ℙ k . Math. Ann. 324 (2002), 3370.CrossRefGoogle Scholar
Dinh, T.-C. and Sibony, N.. Equidistribution towards the Green current for holomorphic maps. Ann. Sci. Éc. Norm. Supér. (4) 41(2) (2008), 307336.Google Scholar
Dinh, T.-C. and Sibony, N.. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. Holomorphic Dynamical Systems (Lecture Notes in Mathematics, 1998) . Springer, Berlin, 2010, pp. 165294.Google Scholar
Dupont, C.. Exemples de Lattès et domaines faiblement sphériques de ℂ n . Manuscripta Math. 111(3) (2003), 357378.Google Scholar
Eremenko, A. È.. Some functional equations connected with the iteration of rational functions. Algebra i Analiz 1(4) (1989), 102116.Google Scholar
Fatou, P.. Sur l’itération analytique et les substitutions permutables. J. Math. Pures Appl. 3 (1924), 150; http://eudml.org/doc/234679.Google Scholar
Fornæss, J. E. and Sibony, N.. Dynamics of P 2 (examples). Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998) (Contemporary Mathematics, 269) . American Mathematical Society, Providence, RI, 2001, pp. 4785.CrossRefGoogle Scholar
Fornæss, J. E. and Sibony, N.. Complex dynamics in higher dimension I. Complex Analytic Methods in Dynamical Systems (Rio de Janeiro, 1992) (Astérisque, 222) . Soc. Math. France Inst. Henri Poincaré 11 rue Pierre & Marie Curie, 75231 Paris Cedex 05 France, 1994, pp. 201231.Google Scholar
Guedj, V.. Equidistribution towards the Green current. Bull. Soc. Math. France 131(3) (2003), 359372.Google Scholar
Julia, G.. Mémoire sur la permutabilité des fractions rationnelles. Ann. Sci. Éc. Norm. Supér. 39 (1922), 131215; http://eudml.org/doc/81407.Google Scholar
Milnor, J.. On Lattès maps. Dynamics on the Riemann Sphere. European Mathematical Society, Zürich, 2006, pp. 943.Google Scholar
Ritt, J. F.. Permutable rational functions. Trans. Amer. Math. Soc. 25(3) (1923), 399448.Google Scholar
Rong, F.. Lattès maps on P 2 . J. Math. Pures Appl. (9) 93(6) (2010), 636650.Google Scholar
Rudin, W.. Function Theory in the Unit Ball of ℂ n (Classics in Mathematics) . Springer, Berlin, 2008, reprint of the 1980 edition.Google Scholar
Sibony, N.. Dynamique des applications rationnelles de P k . Dynamique et Géométrie Complexes (Lyon, 1997) (Panoramas et Synthèses, 8) . Société Mathématique de France, Paris, 1999, pp. ix–x, xi–xii, 97185.Google Scholar
Taflin, J.. Equidistribution speed towards the Green current for endomorphisms of ℙ k . Adv. Math. 227(5) (2011), 20592081.Google Scholar
Tokunaga, S. and Yoshida, M.. Complex crystallographic groups. I. J. Math. Soc. Japan 34(4) (1982), 581593.Google Scholar
Veselov, A. P.. Integrable mappings and Lie algebras. Dokl. Akad. Nauk SSSR 292(6) (1987), 12891291.Google Scholar