Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T02:17:28.119Z Has data issue: false hasContentIssue false

Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra II

Published online by Cambridge University Press:  22 April 2021

ALINE CERQUEIRA
Affiliation:
IMPA, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-320, Brazil (e-mail: alineagc@gmail.com)
CARLOS G. MOREIRA*
Affiliation:
IMPA, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, Jardim Botânico, Rio de Janeiro, RJ, CEP 22460-320, Brazil
SERGIO ROMAÑA
Affiliation:
UFRJ, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Centro de Tecnologia (Bloco C), Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-909, Brazil (e-mail: sergiori@im.ufrj.br)
*
e-mail: gugu@impa.br

Abstract

Let $g_0$ be a smooth pinched negatively curved Riemannian metric on a complete surface N, and let $\Lambda _0$ be a basic hyperbolic set of the geodesic flow of $g_0$ with Hausdorff dimension strictly smaller than two. Given a small smooth perturbation g of $g_0$ and a smooth real-valued function f on the unit tangent bundle to N with respect to g, let $L_{g,\Lambda ,f}$ (respectively $M_{g,\Lambda ,f}$ ) be the Lagrange (respectively Markov) spectrum of asymptotic highest (respectively highest) values of f along the geodesics in the hyperbolic continuation $\Lambda $ of $\Lambda _0$ . We prove that for generic choices of g and f, the Hausdorff dimensions of the sets $L_{g,\Lambda , f}\cap (-\infty , t)$ vary continuously with $t\in \mathbb {R}$ and, moreover, $M_{g,\Lambda , f}\cap (-\infty , t)$ has the same Hausdorff dimension as $L_{g,\Lambda , f}\cap (-\infty , t)$ for all $t\in \mathbb {R}$ .

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cerqueira, A., Matheus, C. and Moreira, C. G.. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. J. Mod. Dyn. 12 (2018), 151174.CrossRefGoogle Scholar
Klingenberg, W. and Takens, F.. Generic properties of geodesic flows. Math. Ann. 197 (1972), 323334.CrossRefGoogle Scholar
Moreira, C. G.. Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. Preprint, 2016, arXiv:1611.00933.Google Scholar
Moreira, C. G. and Romaña, S.. On the Lagrange and Markov dynamical spectra for geodesic flows in surfaces with negative curvature. Preprint, 2015, arXiv:1505.05178.Google Scholar
Moreira, C. G. and Yoccoz, J.-C.. Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale. Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 168.CrossRefGoogle Scholar