Published online by Cambridge University Press: 10 March 2021
Let G be a finite group, let A be an infinite-dimensional stably finite simple unital C*-algebra, and let  $\alpha \colon G \to {\operatorname {Aut}} (A)$ be an action of G on A which has the weak tracial Rokhlin property. Let
$\alpha \colon G \to {\operatorname {Aut}} (A)$ be an action of G on A which has the weak tracial Rokhlin property. Let  $A^{\alpha }$ be the fixed point algebra. Then the radius of comparison satisfies
$A^{\alpha }$ be the fixed point algebra. Then the radius of comparison satisfies  ${\operatorname {rc}} (A^{\alpha }) \leq {\operatorname {rc}} (A)$ and
${\operatorname {rc}} (A^{\alpha }) \leq {\operatorname {rc}} (A)$ and  ${\operatorname {rc}} ( C^* (G, A, \alpha ) ) \leq ({1}/{{{\operatorname{card}}} (G))} \cdot {\operatorname {rc}} (A)$. The inclusion of
${\operatorname {rc}} ( C^* (G, A, \alpha ) ) \leq ({1}/{{{\operatorname{card}}} (G))} \cdot {\operatorname {rc}} (A)$. The inclusion of  $A^{\alpha }$ in A induces an isomorphism from the purely positive part of the Cuntz semigroup
$A^{\alpha }$ in A induces an isomorphism from the purely positive part of the Cuntz semigroup  ${\operatorname {Cu}} (A^{\alpha })$ to the fixed points of the purely positive part of
${\operatorname {Cu}} (A^{\alpha })$ to the fixed points of the purely positive part of  ${\operatorname {Cu}} (A)$, and the purely positive part of
${\operatorname {Cu}} (A)$, and the purely positive part of  ${\operatorname {Cu}} ( C^* (G, A, \alpha ) )$ is isomorphic to this semigroup. We construct an example in which
${\operatorname {Cu}} ( C^* (G, A, \alpha ) )$ is isomorphic to this semigroup. We construct an example in which  $G \,{=}\, {\mathbb {Z}} / 2 {\mathbb {Z}}$, A is a simple unital AH algebra,
$G \,{=}\, {\mathbb {Z}} / 2 {\mathbb {Z}}$, A is a simple unital AH algebra,  $\alpha $ has the Rokhlin property,
$\alpha $ has the Rokhlin property,  ${\operatorname {rc}} (A)> 0$,
${\operatorname {rc}} (A)> 0$,  ${\operatorname {rc}} (A^{\alpha }) = {\operatorname {rc}} (A)$, and
${\operatorname {rc}} (A^{\alpha }) = {\operatorname {rc}} (A)$, and  ${\operatorname {rc}} ({C^* (G, A, \alpha)} ) = ({1}/{2}) {\operatorname {rc}} (A)$.
${\operatorname {rc}} ({C^* (G, A, \alpha)} ) = ({1}/{2}) {\operatorname {rc}} (A)$.
 $\mathbf{\mathcal{Z}}$
-absorbing C*-algebras, in preparation.Google Scholar
$\mathbf{\mathcal{Z}}$
-absorbing C*-algebras, in preparation.Google Scholar $C(X)$
. J. Operator Theory, to appear. arXiv:2004.03013v1.Google Scholar
$C(X)$
. J. Operator Theory, to appear. arXiv:2004.03013v1.Google Scholar $\mathbf{\mathcal{Z}}$
-stable C*-algebras. Preprint, 2018, arXiv:1811.00447v2.Google Scholar
$\mathbf{\mathcal{Z}}$
-stable C*-algebras. Preprint, 2018, arXiv:1811.00447v2.Google Scholar $\mathbf{\mathcal{Z}}$
-stability. Preprint, 2020, arXiv:2003.09787.Google Scholar
$\mathbf{\mathcal{Z}}$
-stability. Preprint, 2020, arXiv:2003.09787.Google Scholar $\mathbf{\mathcal{Z}}$
-absorbing C*-algebras. J. Funct. Anal. 265 (2013), 765–785.CrossRefGoogle Scholar
$\mathbf{\mathcal{Z}}$
-absorbing C*-algebras. J. Funct. Anal. 265 (2013), 765–785.CrossRefGoogle Scholar ${\mathbf{\mathcal{O}}}_{\infty }$
. Adv. Math. 167 (2002), 195–264.10.1006/aima.2001.2041CrossRefGoogle Scholar
${\mathbf{\mathcal{O}}}_{\infty }$
. Adv. Math. 167 (2002), 195–264.10.1006/aima.2001.2041CrossRefGoogle Scholar $\mathbf{\mathcal{Z}}$
-absorbing C*-algebras. Internat. J. Math. 15 (2004), 1065–1084.CrossRefGoogle Scholar
$\mathbf{\mathcal{Z}}$
-absorbing C*-algebras. Internat. J. Math. 15 (2004), 1065–1084.CrossRefGoogle Scholar $\mathbf{\mathcal{Z}}$
-stability and finite-dimensional tracial boundaries. Int. Math. Res. Not. IMRN 292 (2015), 2707–2727.Google Scholar
$\mathbf{\mathcal{Z}}$
-stability and finite-dimensional tracial boundaries. Int. Math. Res. Not. IMRN 292 (2015), 2707–2727.Google Scholar