Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T18:07:31.016Z Has data issue: false hasContentIssue false

Destroying horseshoes via heterodimensional cycles: generating bifurcations inside homoclinic classes

Published online by Cambridge University Press:  01 April 2009

L. J. DÍAZ
Affiliation:
DMAT, PUC-Rio, R. Marquês de S. Vicente 225, 22453-900 Rio de Janeiro RJ, Brazil (email: lodiaz@mat.puc-rio.br)
V. HORITA
Affiliation:
Universidade Estadual Paulista (UNESP), IBILCE, Rua Cristóvão Colombo 2265, 15054-000 S. J. Rio Preto SP, Brazil (email: vhorita@ibilce.unesp.br)
I. RIOS
Affiliation:
IM-Universidade Federal Fluminense, Rua Mário de Santos Braga, s/n, 24020-140 Niterói RJ, Brazil (email: isabel@mat.uff.br)
M. SAMBARINO
Affiliation:
Centro de Matemática - Facultad de Ciencias, Univ. de la República, C. Iguá 4225, 11400 Montevideo, Uruguay (email: samba@cmat.edu.uy)

Abstract

In this paper, we propose a model for the destruction of three-dimensional horseshoes via heterodimensional cycles. This model yields some new dynamical features. Among other things, it provides examples of homoclinic classes properly contained in other classes and it is a model of a new sort of heteroclinic bifurcations we call generating.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alligood, K. T., Sander, E. and Yorke, J. A.. Crossing bifurcations and unstable dimension variability. Phys. Rev. Lett. 96 (2006).CrossRefGoogle ScholarPubMed
[2]Asaoka, M.. A natural horseshoe-breaking family which has a period doubling bifurcation as the first bifurcation. J. Math. Kyoto Univ. 37(3) (1997), 493511.Google Scholar
[3]Bedford, E. and Smillie, J.. Real polynomial diffeomorphisms with maximal entropy: Tangencies. Ann. of Math. (2) 160(1) (2004), 126.CrossRefGoogle Scholar
[4]Bedford, E. and Smillie, J.. Real polynomial diffeomorphisms with maximal entropy. II. Small Jacobian. Ergod. Th. & Dynam. Sys. 26(5) (2006), 12591283.CrossRefGoogle Scholar
[5]Bonatti, Ch. and Crovisier, S.. Récurrence et généricité. Invent. Math. 158(1) (2004), 33104.CrossRefGoogle Scholar
[6]Bonatti, Ch. and Díaz, L. J.. Persistent nonhyperbolic transitive diffeomorphisms. Ann. of Math. (2) 143(2) (1996), 357396.CrossRefGoogle Scholar
[7]Bonatti, Ch. and Díaz, L. J.. Robust heterodimensional cycles. J. Inst. Math. Jussieu 7(3) (2008), 469525.CrossRefGoogle Scholar
[8]Bonatti, Ch., Díaz, L. J. and Viana, M.. Dynamics beyond uniform hyperbolicity. A Global Geometric and Probabilistic Perspective, Mathematical Physics, III (Encyclopaedia of Mathematical Sciences, 102). Springer, Berlin, 2005.Google Scholar
[9]Cao, Y. and Kiriki, S.. An isolated saddle-node bifurcation occurring inside a horseshoe. Dyn. Stab. Syst. 15(1) (2000), 1122.CrossRefGoogle Scholar
[10]Cao, Y., Luzzatto, S. and Rios, I. L.. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies. Discrete Contin. Dyn. Syst. 15(1) (2006), 6171.CrossRefGoogle Scholar
[11]Cao, Y., Luzzatto, S. and Rios, I. L.. The boundary of hyperbolicity for Hénon-like maps. Ergod. Th. & Dynam. Sys. 28(4) (2008), 10491080.CrossRefGoogle Scholar
[12]Carballo, C. M., Morales, C. A. and Pacifico, M. J.. Homoclinic classes for generic C 1 vector fields. Ergod. Th. & Dynam. Sys. 23(2) (2003), 403415.CrossRefGoogle Scholar
[13]Costa, M. J.. Saddle-node horseshoes giving rise to global Hénon-like attractors. An. Acad. Brasil. Ciênc. 70(3) (1998), 393400.Google Scholar
[14]Crovisier, S.. Saddle-node bifurcations for hyperbolic sets. Ergod. Th. & Dynam. Sys. 22(4) (2002), 10791115.CrossRefGoogle Scholar
[15]Devaney, R. and Nitecki, Z.. Shift automorphisms in the Hénon mapping. Comm. Math. Phys. 67(2) (1979), 137146.CrossRefGoogle Scholar
[16]Díaz, L. J.. Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations. Nonlinearity 8(5) (1995), 693713.CrossRefGoogle Scholar
[17]Díaz, L. J.. Robust nonhyperbolic dynamics and heterodimensional cycles. Ergod. Th. & Dynam. Sys. 15(2) (1995), 291315.CrossRefGoogle Scholar
[18]Díaz, L. J. and Rios, I. L.. Critical saddle-node horseshoes: bifurcations and entropy. Nonlinearity 16(3) (2003), 897928.CrossRefGoogle Scholar
[19]Díaz, L. J., Rios, I. L. and Viana, M.. The intermittency route to chaotic dynamics. Global Analysis of Dynamical Systems. Institute of Physics, Bristol, 2001, pp. 309327.Google Scholar
[20]Díaz, L. J. and Rocha, J.. Large measure of hyperbolic dynamics when unfolding heteroclinic cycles. Nonlinearity 10(4) (1997), 857884.CrossRefGoogle Scholar
[21]Díaz, L. J. and Rocha, J.. Partially hyperbolic and transitive dynamics generated by heteroclinic cycles. Ergod. Th. & Dynam. Sys. 21(1) (2001), 2576.CrossRefGoogle Scholar
[22]Díaz, L. J. and Rocha, J.. Heterodimensional cycles, partial hyperbolicity and limit dynamics. Fund. Math. 174(2) (2002), 127186.CrossRefGoogle Scholar
[23]Díaz, L. J. and Rocha, J.. How do hyperbolic homoclinic classes collide at heterodimensional cycles? Discrete Contin. Dyn. Syst. 17(3) (2007), 589627.CrossRefGoogle Scholar
[24]Díaz, L. J., Rocha, J. and Viana, M.. Strange attractors in saddle-node cycles: prevalence and globality. Invent. Math. 125(1) (1996), 3774.Google Scholar
[25]Díaz, L. J. and Santoro, B.. Collision, explosion and collapse of homoclinic classes. Nonlinearity 17(3) (2004), 10011032.CrossRefGoogle Scholar
[26]Díaz, L. J. and Ures, R.. Critical saddle-node cycles: Hausdorff dimension and persistence of tangencies. Ergod. Th. & Dynam. Sys. 22(4) (2002), 11171140.CrossRefGoogle Scholar
[27]Downarowicz, T. and Newhouse, S.. Symbolic extensions and smooth dynamical systems. Invent. Math. 160(3) (2005), 453499.CrossRefGoogle Scholar
[28]Kan, I., Koçak, H. and Yorke, J. A.. Antimonotonicity: concurrent creation and annihilation of periodic orbits. Ann. of Math. (2) 136(2) (1992), 219252.CrossRefGoogle Scholar
[29]Kiriki, S.. The Palis and Takens’ problem on the first homoclinic tangency inside the horseshoe. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6(4) (1996), 737744.CrossRefGoogle Scholar
[30]Kostelich, E. J., Kan, I., Grebogi, C., Ott, E. and Yorke, J. A.. Unstable dimension variability: a source of nonhyperbolicity in chaotic systems. Phys. D 109(1–2) (1997), 8190. Physics and dynamics between chaos, order, and noise (Berlin, 1996).CrossRefGoogle Scholar
[31]Kosuga, D.. A saddle-node horseshoe of surface diffeomorphism and topological entropy. Preprint.Google Scholar
[32]Leplaideur, R. and Rios, I. L.. Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes. Nonlinearity 19(11) (2006), 26672694.CrossRefGoogle Scholar
[33]Mañé, R.. Contributions to the stability conjecture. Topology 17(4) (1978), 383396.CrossRefGoogle Scholar
[34]Milnor, J. and Thurston, W.. On iterated maps of the interval. Dynamical Systems (College Park, MD, 1986–87) (Lecture Notes in Mathematics, 1342). Springer, Berlin, 1988, pp. 465563.Google Scholar
[35]Newhouse, S.. Lectures on dynamical systems. Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978) (Progress in Mathematics, 8). Birkhäuser, Boston, MA, 1980, pp. 1114.Google Scholar
[36]Newhouse, S. and Palis, J.. Cycles and bifurcation theory. Trois études en dynamique qualitative (Astérisque, 31). Société Mathématique de France, Paris, 1976, pp. 43140.Google Scholar
[37]Newhouse, S., Palis, J. and Takens, F.. Bifurcations and stability of families of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 57 (1983), 571.CrossRefGoogle Scholar
[38]Palis, J. and Takens, F.. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations (Cambridge Studies in Advanced Mathematics, 35). Cambridge University Press, Cambridge, 1993.Google Scholar
[39]Rios, I. L.. Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies. Nonlinearity 14(3) (2001), 431462.CrossRefGoogle Scholar
[40]Shub, M.. Topologically transitive diffeomorphisms of T 4. Proceedings of the Symposium on Differential Equations and Dynamical Systems (Lecture Notes in Mathematics, 206). Springer, Berlin, 1971,pp. 3940.CrossRefGoogle Scholar
[41]Takens, F.. Intermittancy: Global aspects. Dynamical Systems Valparaiso 1986 (Lecture Notes in Mathematics, 1331). Springer, Berlin, 1988, pp. 213239.CrossRefGoogle Scholar
[42]Williams, R. F.. The ‘DA’ maps of Smale and structural stability. Global Analysis (Proceedings of the Symposia in Pure Mathematics, Vol. XIV, Berkeley, CA, 1968). American Mathematical Society, Providence, RI, 1970, pp. 329334.Google Scholar
[43]Yorke, J. A. and Alligood, K.. Cascades of period-doubling bifurcations: a prerequisite for horseshoes. Bull. Amer. Math. Soc. (N.S.) 9(3) (1983), 319322.CrossRefGoogle Scholar
[44]Zeeman, E. C.. Bifurcation, catastrophe, and turbulence. New Directions in Applied Mathematics (Cleveland, OH, 1980). Springer, New York, 1982, pp. 109153.CrossRefGoogle Scholar