Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T04:01:33.786Z Has data issue: false hasContentIssue false

Deviations in the Franks–Misiurewicz conjecture

Published online by Cambridge University Press:  26 February 2019

ALEJANDRO PASSEGGI
Affiliation:
UdelaR, Facultad de Ciencias, Uruguay email alepasseggi@gmail.com, samba@cmat.edu.uy
MARTÍN SAMBARINO
Affiliation:
UdelaR, Facultad de Ciencias, Uruguay email alepasseggi@gmail.com, samba@cmat.edu.uy

Abstract

We show that if there exists a counter example for the rational case of the Franks–Misiurewicz conjecture, then it must exhibit unbounded deviations in the complementary direction of its rotation set.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyland, P., de Carvalho, A. and Hall, T.. New rotation sets in a family of torus homeomorphisms. Invent. Math. 204(3) (2016), 895937.Google Scholar
Calvez, P. L. and Tal, F. A.. Forcing theory for transverse trajectories of surface homeomorphisms. Invent. Math. 212 (2018), 619729.Google Scholar
Dávalos, P.. On annular maps of the torus and sublinear diffusion. J. Inst. Math. Jussieu 17(4) (2018), 913978.Google Scholar
Franks, J. and Misiurewicz, M.. Rotation sets of toral flows. Proc. Amer. Math. Soc. 109(1) (1990), 243249.Google Scholar
Franks, J.. Recurrence and fixed points of surface homeomorphisms. Ergod. Th. & Dynam. Sys. 8* (1988), 99107 Charles Conley Memorial Issue.Google Scholar
Franks, J.. Realizing rotation vectors for torus homeomorphisms. Trans. Amer. Math. Soc. 311(1) (1989), 107115.Google Scholar
Jäger, T.. Linearization of conservative toral homeomorphisms. Invent. Math. 176(3) (2009), 601616.Google Scholar
Jäger, T. and Passeggi, A.. On torus homeomorphisms semiconjugate to irrational rotations. Ergod. Th. & Dynam. Sys. 35 (2015), 21142137.Google Scholar
Jäger, T. and Tal, F. A.. Irrational rotation factors for conservative torus homeomorphisms. Ergod. Th. & Dynam. Sys. 37(5) (2017), 15371546.Google Scholar
Kocsard, A.. On the dynamics of minimal homeomorphisms of $\mathbb{T}^{2}$ which are not pseudo-rotations. Preprint, 2016, arXiv:1611.03784.Google Scholar
Passeggi, K. and Sambarino. The Franks–Misiurewicz conjecture for extensions of irrational rotations. Preprint, 2016, arXiv:1611.05498.Google Scholar
Kwapisz, J.. A toral diffeomorphism with a nonpolygonal rotation set. Nonlinearity 8(4) (1995), 461476.Google Scholar
Llibre, J. and MacKay, R. S.. Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Th. & Dynam. Sys. 11(1) (1991), 115128.Google Scholar
Misiurewicz, M. and Ziemian, K.. Rotation sets for maps of tori. J. Lond. Math. Soc. (2) 40(3) (1989), 490506.Google Scholar
Misiurewicz, M. and Ziemian, K.. Rotation sets and ergodic measures for torus homeomorphisms. Fund. Math. 137(1) (1991), 4552.Google Scholar