Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T23:33:44.816Z Has data issue: false hasContentIssue false

Differentiable structures of central Cantor sets

Published online by Cambridge University Press:  12 April 2001

RODRIGO BAMÓN
Affiliation:
Depto. de Matemática, Universidad de Chile, Casilla 653 Santiago, Chile (e-mail: rbamon@abello.dic.uchile.cl)
CARLOS G. MOREIRA
Affiliation:
IMPA, Estrada Dona Castorina 110, Jardim Botánico 22460-320, Rio de Janeiro, Brasil (e-mail: gugu@impa.br)
SERGIO PLAZA
Affiliation:
Depto. de Matemática, Facultad de Ciencias, Universidad de Santiago de Chile, Casilla 307-Correo 2, Santiago, Chile (e-mail: splaza@fermat.usach.cl)
JAIME VERA
Affiliation:
Depto. de Matemática, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile (e-mail: jvera@socompa.cecun.ucn.cl)

Abstract

Central Cantor sets form a class of symmetric Cantor sets of the real line. Here we give a complete characterization of the $C^{k + \alpha}$ regularity of these Cantor sets. We also give a classification of central Cantor sets up to global and local diffeomorphisms. Examples of central Cantor sets with special dynamical and measure-theoretical properties are also provided. Finally, we calculate the fractal dimensions of an arbitrary central Cantor set.

Type
Research Article
Copyright
1997 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)