Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T05:23:41.646Z Has data issue: false hasContentIssue false

The ergodic theorem for additive cocycles of ℤd or ℝd

Published online by Cambridge University Press:  19 September 2008

Daniel Boivin
Affiliation:
The Ohio State University, Columbus, Ohio 43210, USA
Yves Derriennic
Affiliation:
Université de Bretagne Occidentale, Brest, France

Extract

Let us consider (Ω, , μ, G) a measure-preserving dynamical system, (Ω, , μ) is a probability space. The group G, which is supposed to be either ℤd or ℝd (d ≥ 1), acts on Ω by measure-preserving transformations. This action is denned by a map

which is jointly measurable, such that Tx+y = TxTy and Txμ = μ

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Broise, M., Deniel, Y. & Derriennic, Y.. Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires. Annales de I'lnstitut Fourier 39 (3) (1989), 126.Google Scholar
[2]Calderon, A.. Ergodic theory and translation invariant operators. Proc. Nat. Acad. Sci. USA 59 (1968), 349353.Google Scholar
[3]Chow, Y. S. & Teicher, H.. Probability Theory. Springer: Berlin-Heidelberg-New York, 1978.Google Scholar
[4]Guzman, M. de. Real Variable Methods in Fourier Analysis. Math. Studies Vol. 46, North-Holland: Amsterdam, 1981.CrossRefGoogle Scholar
[5]Hardy, G. H., Littlewood, J. E. & Polya, G.. Inequalities. Cambridge University Press: Cambridge, 1934.Google Scholar
[6]Hsu, P. L. & Robbins, H.. Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA 33 (1947), 2531.Google Scholar
[7]Katok, A. B.. The special representation theorem for multi-dimensional group actions. Astérisque 49 (1977), 117140.Google Scholar
[8]Kesten, H.. Aspects of first passage percolation. Ecole d'Eté de Probabilités Saint Flour, 1984. Lecture Notes in Math. 1180 (Springer, 1986), 126265.Google Scholar
[9]Krengel, U.. Ergodic Theorems. De Gruyter: 1985.Google Scholar
[10]Kozlov, S. M.. The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys 40 (2) (1985), 73145.CrossRefGoogle Scholar
[11]Lorentz, G. G.. Some new functional spaces. Ann. Math. 51 (1950), 3755.CrossRefGoogle Scholar
[12]Ollagnier, J. Moulin & Pinchon, D.. Mesures quasi-invariantes à dérivée continue. C.R. Acad. Sc. Paris 282, Série A (1976), 13711373.Google Scholar
[13]Stein, E. M.. Singular Integrals and Differentiability Properties of Functions. Princeton University Press: 1970.Google Scholar
[14]Stein, E. M.. Editor's note: the differentiability of functions in ℝn. Ann. Math. 113 (1981), 383385.Google Scholar
[15]Stein, E. M. & Weiss, G.. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press: 1971.Google Scholar
[16]Wiener, N.. The ergodic theorem. Duke Math. J. 5 (1939), 118.Google Scholar