Published online by Cambridge University Press: 24 January 2017
We consider suspension semiflows of angle-multiplying maps on the circle and study the distributions of periods of their periodic orbits. Under generic conditions on the roof function, we give an asymptotic formula on the number $\unicode[STIX]{x1D70B}(T)$ of prime periodic orbits with period
$\leq T$. The error term is bounded, at least, by
$$\begin{eqnarray}\exp \biggl(\biggl(1-\frac{1}{4\lceil \unicode[STIX]{x1D712}_{\text{max}}/h_{\text{top}}\rceil }+\unicode[STIX]{x1D700}\biggr)h_{\text{top}}\cdot T\biggr)\quad \text{in the limit }T\rightarrow \infty\end{eqnarray}$$
$\unicode[STIX]{x1D700}>0$, where
$h_{\text{top}}$ and
$\unicode[STIX]{x1D712}_{\text{max}}$ are, respectively, the topological entropy and the maximal Lyapunov exponent of the semiflow.