Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T01:05:49.915Z Has data issue: false hasContentIssue false

Escaping orbits are rare in the quasi-periodic Fermi–Ulam ping-pong

Published online by Cambridge University Press:  06 September 2018

MARKUS KUNZE
Affiliation:
Universität Köln, Institut für Mathematik, Weyertal 86–90, D-50931 Köln, Germany email mkunze@mi.uni-koeln.de
RAFAEL ORTEGA
Affiliation:
Departamento de Matemática Aplicada, Universidad de Granada, E-18071 Granada, Spain email rortega@ugr.es

Abstract

We consider the quasi-periodic Fermi–Ulam ping-pong model with no diophantine condition on the frequencies and show that typically the set of initial data which leads to escaping orbits has Lebesgue measure zero.

Type
Original Article
Copyright
© Cambridge University Press, 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campos, J. and Tarallo, M.. Nonmonotone equations with large almost periodic forcing terms. J. Differential Equations 254 (2013), 686724.Google Scholar
De Simoi, J.. Stability and instability results in a model of Fermi acceleration. Discrete Contin. Dyn. Syst. 25 (2009), 719750.Google Scholar
De Simoi, J.. Fermi acceleration in anti-integrable limits of the standard map. Comm. Math. Phys. 321 (2013), 703745.Google Scholar
Dold, A.. Lectures on Algebraic Topology. Springer, Berlin, 1972.Google Scholar
Dolgopyat, D.. Bouncing balls in non-linear potentials. Discrete Contin. Dyn. Syst. 22 (2008), 165182.Google Scholar
Dolgopyat, D.. Fermi acceleration. Geometric and Probabilistic Structures in Dynamics. Eds. Burns, K., Dolgopyat, D. and Pesin, Y.. American Mathematical Society, Providence, RI, 2008, pp. 149166.Google Scholar
Dolgopyat, D.. Lectures on Bouncing Balls, lecture notes for a course in Murcia, 2013; available athttp://www2.math.umd.edu/∼dolgop/BBNotes.pdf.Google Scholar
Dolgopyat, D. and De Simoi, J.. Dynamics of some piecewise smooth Fermi–Ulam models. Chaos 22 (2012), 026124.Google Scholar
Einsiedler, M and Ward, T.. Ergodic Theory With a View Towards Number Theory. Springer, Berlin–New York, 2011.Google Scholar
Fermi, E.. On the origin of cosmic radiation. Phys. Rev. 75 (1949), 11691174.Google Scholar
Kunze, M. and Ortega, R.. Complete orbits for twist maps on the plane: the case of small twist. Ergod. Th. & Dynam. Sys. 31 (2011), 14711498.Google Scholar
Laederich, S. and Levi, M.. Invariant curves and time-dependent potentials. Ergod. Th. & Dynam. Sys. 11 (1991), 365378.Google Scholar
Moser, J.. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1962), 120.Google Scholar
Oxtoby, J. C. and Ulam, S. M.. Measure-preserving homeomorphisms and metrical transitivity. Ann. of Math. (2) 42 (1941), 874920.Google Scholar
Pustylnikov, L. D.. Poincaré models, rigorous justification of the second law of thermodynamics from mechanics, and the Fermi acceleration mechanism. Russian Math. Surveys 50 (1995), 145189.Google Scholar
Ulam, S. M.. On some statistical properties of dynamical systems. Proc. Fourth Berkeley Symp. on Mathematical Statistics and Probability (Contributions to Astronomy, Meteorology, and Physics, 3). University of California Press, Berkeley, CA, 1961, pp. 315320.Google Scholar
Zharnitsky, V.. Instability in Fermi–Ulam ‘ping-pong’ problem. Nonlinearity 11 (1998), 14811487.Google Scholar
Zharnitsky, V.. Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi–Ulam problem. Nonlinearity 13 (2000), 11231136.Google Scholar