Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:48:44.056Z Has data issue: false hasContentIssue false

Existence of the zero-temperature limit of equilibrium states on topologically transitive countable Markov shifts

Published online by Cambridge University Press:  04 October 2022

ELMER BELTRÁN
Affiliation:
Departamento de Matemáticas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile (e-mail: rusbert.unt@gmail.com)
JORGE LITTIN*
Affiliation:
Departamento de Matemáticas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile (e-mail: rusbert.unt@gmail.com)
CESAR MALDONADO
Affiliation:
IPICYT, División de Control y Sistemas Dinámicos, Camino a la Presa San José 2055, Lomas 4a. sección, San Luis Potosí, México (e-mail: cesar.maldonado@ipicyt.edu.mx)
VICTOR VARGAS
Affiliation:
Center for Mathematics of the University of Porto, Rua do Campo Alegre 687, Porto, Portugal (e-mail: vavargascu@gmail.com)
*

Abstract

Consider a topologically transitive countable Markov shift $\Sigma $ and a summable locally constant potential $\phi $ with finite Gurevich pressure and $\mathrm {Var}_1(\phi ) < \infty $. We prove the existence of the limit $\lim _{t \to \infty } \mu _t$ in the weak$^\star $ topology, where $\mu _t$ is the unique equilibrium state associated to the potential $t\phi $. In addition, we present examples where the limit at zero temperature exists for potentials satisfying more general conditions.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baraviera, A., Leplaideur, R. and Lopes, A. O.. Ergodic optimization, zero temperature limits and the max-plus algebra. Paper from the 29th Brazilian Mathematics Colloquium – 29 Colóquio Brasileiro de Matemática, Rio de Janeiro, Brazil, July 22–August 2, 2013. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013.Google Scholar
Beltrán, E. R., Bissacot, R. and Endo, E. O.. Infinite DLR measures and volume-type phase transitions on countable Markov shifts. Nonlinearity 34(7) (2021), 4819.CrossRefGoogle Scholar
Bissacot, R. and Freire, R.. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergod. Th. & Dynam. Sys. 34(4) (2014), 11031115.CrossRefGoogle Scholar
Bissacot, R., Mengue, J. and Pérez, E.. A large deviation principle for Gibbs states on Markov shifts at zero temperature. Preprint, 2016, arXiv:1612.05831.Google Scholar
Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Cham, 1975.CrossRefGoogle Scholar
Brémont, J.. Gibbs measures at temperature zero. Nonlinearity 16(2) (2003), 419426.CrossRefGoogle Scholar
Buzzi, J. and Sarig, O.. Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Th. & Dynam. Sys. 23(5) (2003), 13831400.CrossRefGoogle Scholar
Chazottes, J.-R., Gambaudo, J.-M. and Ugalde, E.. Zero-temperature limit of one-dimensional Gibbs states via renormalization: the case of locally constant potentials. Ergod. Th. & Dynam. Sys. 31(4) (2011), 11091161.CrossRefGoogle Scholar
Chazottes, J.-R. and Hochman, M.. On the zero-temperature limit of Gibbs states. Commun. Math. Phys. 297(1) (2010), 265281.CrossRefGoogle Scholar
Coelho-Filho, Z.. Entropy and ergodicity of skew-products over subshifts of finite type and central limit asymptotics. PhD Thesis, University of Warwick, 1990.Google Scholar
Cyr, V.. Countable Markov shifts with transient potentials. Proc. Lond. Math. Soc. (3) 103 (2011), 923949.CrossRefGoogle Scholar
Freire, R. and Vargas, V.. Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts. Trans. Amer. Math. Soc. 370(12) (2018), 84518465.CrossRefGoogle Scholar
Gurevich, B. M.. A variational characterization of one-dimensional countable state Gibbs random fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 68 (1984), 205242.CrossRefGoogle Scholar
Iommi, G.. Ergodic optimization for renewal type shifts. Monatsh. Math. 150(2) (2007), 9195.CrossRefGoogle Scholar
Jenkinson, O., Mauldin, R. D. and Urbański, M.. Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Stat. Phys. 119(3–4) (2005), 765776.CrossRefGoogle Scholar
Jenkinson, O., Mauldin, R. D. and Urbański, M.. Ergodic optimization for countable alphabet subshifts of finite type. Ergod. Th. & Dynam. Sys. 26(6) (2006), 17911803.CrossRefGoogle Scholar
Kempton, T.. Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Stat. Phys. 143(4) (2011), 795806.CrossRefGoogle Scholar
Leplaideur, R.. A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18(6) (2005), 28472880.CrossRefGoogle Scholar
Lopes, A. O. and Vargas, V.. Entropy, pressure, ground states and calibrated sub-actions for linear dynamics. Bull. Braz. Math. Soc. (N.S.) 53 (2022), 10731106.CrossRefGoogle Scholar
Mauldin, R. D. and Urbański, M.. Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125 (2001), 93130.CrossRefGoogle Scholar
Morris, I. D.. Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type. J. Stat. Phys. 126(2) (2007), 315324.CrossRefGoogle Scholar
Ruelle, D.. Statistical mechanics of a one-dimensional lattice gas. Comm. Math. Phys. 9 (1968), 267278.CrossRefGoogle Scholar
Sarig, O.. Lecture Notes on Thermodynamic Formalism for Topological Markov Shifts. Penn State, 2009. Available at: https://www.weizmann.ac.il/math/sarigo/lecture-notes.Google Scholar
Sarig, O. M.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19(6) (1999), 15651593.CrossRefGoogle Scholar
Sarig, O. M.. Phase transitions for countable Markov shifts. Comm. Math. Phys. 217(3) (2001), 555577.CrossRefGoogle Scholar
Shwartz, O.. Thermodynamic formalism for transient potential functions. Comm. Math. Phys. 366(2) (2019), 737779.CrossRefGoogle Scholar
Souza, R. R. and Vargas, V.. Existence of Gibbs states and maximizing measures on a general one-dimensional lattice system with Markovian structure. Qual. Theory Dyn. Syst. 21(1) (2022), 5.CrossRefGoogle Scholar
van Enter, A. C. D. and Ruszel, W. M.. Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127(3) (2007), 567573.CrossRefGoogle Scholar