Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T21:18:38.721Z Has data issue: false hasContentIssue false

Flots topologiquement transitifs sur les surfaces compactes sans bord: contrexemples à une conjecture de Katok

Published online by Cambridge University Press:  19 September 2008

Gilbert Levitt
Affiliation:
Département de Mathématiques, Université Paris VII, 2 Place Jussieu, 75251 Paris, Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that on closed surfaces of higher genus cohomological invariants are not sufficient to distinguish topologically transitive flows which are not topologically conjugate; this contradicts a conjecture of Katok.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

RÉFÉRENCES

[1]Fathi, A., Laudenbach, F. & Poenaru, V.. Travaux de Thurston sur les surfaces. Astérisque. 66–67 (1979).Google Scholar
[2]Fried, D.. Geometry of cross-sections to flows. Topology 21 (1981), 353371.CrossRefGoogle Scholar
[3]Katok, A. B.. Invariant measures of flows on oriented surfaces. Soviet Math. Dokl. 14 (1973) (4), 11041108.Google Scholar
[4]Keane, M. & Rauzy, G.. Stride ergodicité des échanges d'intervalles, Math. Z. 174 (1980), 203212.CrossRefGoogle Scholar
[5]Levitt, G.. Pantalons et feuilletages des surfaces. Topology. 21 (1982), 933.CrossRefGoogle Scholar
[6]Levitt, G.. La décomposition dynamique et la différentiabilité des feuilletages des surfaces. Preprint.Google Scholar
[7]Masur, H.. Interval exchange transformations and measured foliations. Preprint.Google Scholar
[8]Moser, J.. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286294.CrossRefGoogle Scholar
[9]Rees, M.. An alternative approach to the ergodic theory of measured foliations on surfaces. Ergod. Th. & Dynam. Sys. 1 (1981), 461488.CrossRefGoogle Scholar
[10]Schwartzman, S.. Asymptotic cycles. Ann. of Math. 66 (1957), 270284.CrossRefGoogle Scholar
[11]Sullivan, D.. Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36 (1976), 225255.CrossRefGoogle Scholar
[12]Thurston, W. P.. On the geometry and dynamics of diffeomorphisms of surfaces, I. Preprint: Princeton University.Google Scholar
[13]Veech, W. A.. Quasiminimal invariants for foliations of orientable closed surfaces. Preprint. Rice University.Google Scholar
[14]Veech, W. A., Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. 115 (1982), 201242.CrossRefGoogle Scholar