Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-04T00:41:45.074Z Has data issue: false hasContentIssue false

Furstenberg systems of pretentious and MRT multiplicative functions

Published online by Cambridge University Press:  03 February 2025

NIKOS FRANTZIKINAKIS*
Affiliation:
Department of Mathematics and Applied Mathematics, University of Crete, Voutes University Campus, Heraklion 71003, Greece
MARIUSZ LEMAŃCZYK
Affiliation:
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland (e-mail: mlem@mat.umk.pl)
THIERRY DE LA RUE
Affiliation:
Université de Rouen Normandie, CNRS, Laboratoire de Mathématiques Raphaël Salem, Avenue de l’Université - 76801 Saint Étienne du Rouvray, France (e-mail: Thierry.de-la-Rue@univ-rouen.fr)

Abstract

We prove structural results for measure-preserving systems, called Furstenberg systems, naturally associated with bounded multiplicative functions. We show that for all pretentious multiplicative functions, these systems always have rational discrete spectrum and, as a consequence, zero entropy. We obtain several other refined structural and spectral results, one consequence of which is that the Archimedean characters are the only pretentious multiplicative functions that have Furstenberg systems with trivial rational spectrum, another is that a pretentious multiplicative function has ergodic Furstenberg systems if and only if it pretends to be a Dirichlet character, and a last one is that for any fixed pretentious multiplicative function, all its Furstenberg systems are isomorphic. We also study structural properties of Furstenberg systems of a class of multiplicative functions, introduced by Matomäki, Radziwiłł, and Tao, which lie in the intermediate zone between pretentiousness and strong aperiodicity. In a work of the last two authors and Gomilko, several examples of this class with exotic ergodic behavior were identified, and here we complement this study and discover some new unexpected phenomena. Lastly, we prove that Furstenberg systems of general bounded multiplicative functions have divisible spectrum. When these systems are obtained using logarithmic averages, we show that a trivial rational spectrum implies a strong dilation invariance property, called strong stationarity, but, quite surprisingly, this property fails when the systems are obtained using Cesàro averages.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergelson, V., Kułaga-Przymus, J., Lemańczyk, M. and Richter, F.. Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics. Ergod. Th. & Dynam. Sys. 39 (2019), 23322383.CrossRefGoogle Scholar
Bergelson, V., Kułaga-Przymus, J., Lemańczyk, M. and Richter, F.. A structure theorem for level sets of multiplicative functions and applications. Int. Math. Res. Not. (IMRN) 2020(5) (2020), 13001345.CrossRefGoogle Scholar
Besicovitch, A. S.. Almost Periodic Functions. Dover Publications, Inc., New York, 1955.Google Scholar
Cellarosi, F. and Sinai, Y. G.. Ergodic properties of square-free numbers. J. Eur. Math. Soc. (JEMS) 15(4) (2013), 13431374.CrossRefGoogle Scholar
Chowla, S.. The Riemann Hypothesis and Hilbert’s Tenth Problem (Mathematics and Its Applications, 4). Gordon and Breach Science Publishers, New York, 1965.Google Scholar
Daboussi, H.. Fonctions multiplicatives presque périodiques D’après un travail commun avec Hubert Delange. Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974). Asterisque 24–25 (1975), 321324.Google Scholar
Daboussi, H. and Delange, H.. Quelques proprietes des functions multiplicatives de module au plus egal 1. C. R. Acad. Sci. Paris Ser. A 278 (1974), 657660.Google Scholar
Daboussi, H. and Delange, H.. On multiplicative arithmetical functions whose modulus does not exceed one. J. Lond. Math. Soc. (2) 26(2) (1982), 245264.CrossRefGoogle Scholar
El Abdalaoui, E., Kułaga-Przymus, J., Lemańczyk, M. and de la Rue, T.. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete Contin. Dyn. Syst. 37(6) (2017), 28992944.CrossRefGoogle Scholar
Elliott, P.. Probabilistic Number Theory I. Springer-Verlag, New York, 1979.CrossRefGoogle Scholar
Elliott, P.. Multiplicative functions $\left|g|\le 1\right.$ and their convolutions: an overview. Séminaire de Théorie des Nombres, Paris, 1987–88 (Progress in Mathematics, 81). Birkhäuser Boston, Boston, MA, 1990, pp. 6375.CrossRefGoogle Scholar
Elliott, P.. On the correlation of multiplicative and the sum of additive arithmetic functions. Mem. Amer. Math. Soc. 112(538) (1994), viii+88pp.Google Scholar
Ferenczi, S., Kułaga-Przymus, J. and Lemańczyk, M.. Sarnak’s conjecture – what’s new. Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics (Lecture Notes in Mathematics, 2213). Springer International Publishing, Cham, 2018, pp. 163235.CrossRefGoogle Scholar
Frantzikinakis, N.. The structure of strongly stationary systems. J. Anal. Math. 93 (2004), 359388.CrossRefGoogle Scholar
Frantzikinakis, N.. Ergodicity of the Liouville system implies the Chowla conjecture. Discrete Anal. 19 (2017), 41 pp.Google Scholar
Frantzikinakis, N. and Host, B.. The logarithmic Sarnak conjecture for ergodic weights. Ann. of Math. (2) 187 (2018), 869931.CrossRefGoogle Scholar
Frantzikinakis, N. and Host, B.. Furstenberg systems of bounded multiplicative functions and applications. Int. Math. Res. Not. IMRN 2021(8) (2021), 60776107.CrossRefGoogle Scholar
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 149.CrossRefGoogle Scholar
Furstenberg, H.. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31 (1977), 204256.CrossRefGoogle Scholar
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, NJ, 1981.CrossRefGoogle Scholar
Furstenberg, H. and Katznelson, Y.. A density version of the Hales-Jewett theorem. J. Analyse Math. 57 (1991), 64119.CrossRefGoogle Scholar
Gomilko, A., Kwietniak, D. and Lemańczyk, M.. Sarnak’s conjecture implies the Chowla conjecture along a subsequence. Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics (Lecture Notes in Mathematics, 2213). Springer, Cham, 2018, pp. 237247.CrossRefGoogle Scholar
Gomilko, A., Lemańczyk, M. and de la Rue, T.. On Furstenberg systems of aperiodic multiplicative functions of Matomäki, Radziwiłł, and Tao. J. Mod. Dyn. 17 (2021), 529555.CrossRefGoogle Scholar
Graham, S. and Kolesnik, G.. Van der Corput’s Method for Exponential Sums (London Mathematical Society Lecture Note Series, 126). Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
Granville, A. and Soundararajan, K.. Large character sums: pretentious characters and the Pólya–Vinogradov theorem. J. Amer. Math. Soc. 20(2) (2007), 357384.CrossRefGoogle Scholar
Granville, A. and Soundararajan, K.. Pretentious multiplicative functions and an inequality for the zeta-function. Anatomy of Integers (CRM Proceedings & Lecture Notes, 46). American Mathematical Society, Providence, RI, 2008, pp. 191197.CrossRefGoogle Scholar
Granville, A. and Soundararajan, K.. Multiplicative Number Theory: The Pretentious Approach. Book manuscript in preparation.Google Scholar
Jenvey, E.. Strong stationarity and De Finetti’s theorem. J. Anal. Math. 73 (1997), 118.CrossRefGoogle Scholar
Kamae, T.. Subsequences of normal sequences. Israel J. Math. 16 (1973), 121149.CrossRefGoogle Scholar
Kechris, A.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156). Springer-Verlag, New York, 1995 (English Summary).CrossRefGoogle Scholar
Klurman, O.. Correlations of multiplicative functions and applications. Compos. Math. 153 (2017), 16221657.CrossRefGoogle Scholar
Klurman, O., Mangerel, A., Pohoata, C. and Teräväinen, J.. Multiplicative functions that are close to their mean. Trans. Amer. Math. Soc. 374 (2021), 79677990.Google Scholar
Klurman, O., Mangerel, A. and Teräväinen, J.. On Elliott’s conjecture and applications. Preprint, 2023, arXiv:2304.05344.Google Scholar
Kuipers, L. and Niederreiter, H.. Uniform Distribution of Sequences (Pure and Applied Mathematics). Wiley-Interscience, New York, 1974.Google Scholar
Mangerel, A.. Topics in multiplicative and probabilistic number theory. PhD Thesis, University of Toronto, 2018.Google Scholar
Matomäki, K. and Radziwiłł, M.. Multiplicative functions in short intervals. Ann. of Math. (2) 183 (2016), 10151056.CrossRefGoogle Scholar
Matomäki, K., Radziwiłł, M. and Tao, T.. An averaged form of Chowla’s conjecture. Algebra & Number Theory 9 (2015), 21672196.CrossRefGoogle Scholar
Matomäki, K., Radziwiłł, M. and Tao, T.. Fourier uniformity of bounded multiplicative functions in short intervals on average. Invent. Math. 220 (2020), 158.CrossRefGoogle Scholar
Matomäki, K., Radziwiłł, M., Tao, T., Teräväinen, J. and Ziegler, T.. Higher uniformity of bounded multiplicative functions in short intervals on average. Ann. of Math. (2) 197 (2023), 739857.CrossRefGoogle Scholar
Sarnak, P.. Möbius randomness and dynamics. Not. S. A. Math. Soc. 43(2) (2012), 8997.Google Scholar
Sarnak, P.. Three lectures on the Möbius function randomness and dynamics. https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf.Google Scholar
Schwartz, A.. Additive subgroups of the rational numbers. Pi Mu Epsilon J. 4(2) (1965), 7173.Google Scholar
Tao, T.. The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. Forum Math. Pi 4 (2016), e8.CrossRefGoogle Scholar
Tao, T.. Equivalence of the logarithmically averaged Chowla and Sarnak conjectures. Number Theory – Diophantine Problems, Uniform Distribution and Applications. Ed. Elsholtz, C. and Grabner, P.. Springer, Cham, 2017, pp. 391421.CrossRefGoogle Scholar
Tao, T. and Teräväinen, J.. The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures. Duke Math. J. 168 (2019), 19772027.CrossRefGoogle Scholar
Tao, T. and Teräväinen, J.. The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures. Algebra Number Theory 13 (2019), 21032150.CrossRefGoogle Scholar
Weiss, B.. Normal sequences as collectives. Proceedings of Symposium on Topological Dynamics and Ergodic Theory. University of Kentucky, Lexington, KY, 1971.Google Scholar