Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:06:00.119Z Has data issue: false hasContentIssue false

Geometry of the Katok examples

Published online by Cambridge University Press:  19 September 2008

Wolfgang Ziller
Affiliation:
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider examples of Finsler metrics symmetric or not) on Sn, Pnℂ, Pnℍ, and P2Ca with only finitely many closed geodesies or with only few short closed geodesies. The number of closed geodesies in these examples and properties of the closed geodesies are considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

[1]Anosov, D. V.. Geodesies in Finsler geometry. Amer. Math. Soc. Transl. 109 (1977), 8185.Google Scholar
[2]Arnold, V. I., Mathematical methods of classical mechanics. Graduate Texts in Mathematics No. 60.Springer: Berlin-Heidelberg-New York, 1978.Google Scholar
[3]Ballmann, W., Thorbergsson, G. & Ziller, W.. Closed geodesies on positively curved manifolds Ann. Math. 116 (1982), 213247.CrossRefGoogle Scholar
[4]Bernstein, I.. On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Camb. Phil. Soc. 79 (1976), 129134.CrossRefGoogle Scholar
[5]Besse, A. L.. Manifolds all of whose geodesies are closed. Ergebnisse der Mathematik No. 93, Springer: Berlin-Heidelberg-New York, 1978.Google Scholar
[6]Bliss, G. A.. An existence theorem for a differential equation of second order with an application to the calculus of variations. Trans. Amer. Math. Soc. 8 (1904), 113125.CrossRefGoogle Scholar
[7]Bott, R.. On the iteration of closed geodesies and the Sturm intersection theory. Comm. Pure Appl. Math. 9 (1956), 171206.CrossRefGoogle Scholar
[8]Gluck, H. & Ziller, W.. Existence of periodic motions of conservative systems. Preprint, University of Pennsylvania, 1980.Google Scholar
[9]Gromoll, D. & Grove, K.. On metrics on S 2 all of whose geodesies are closed. Invent. Math. 65 (1981), 175177.CrossRefGoogle Scholar
[10]Gromoll, D. & Meyer, W.. Periodic geodesies on compact Riemannian manifolds. J. Diff. Geom. 3 (1969), 493510.Google Scholar
[11]Helton, W.. An operator algebra approach to partial differential equations, propagation of singularities and spectral theory. Indiana Univ. Math. J. 26 (1977), 9971018.CrossRefGoogle Scholar
[12]Katok, A. B.. Ergodic properties of degenerate integrable Hamiltonian systems. Izv. Akad. Nauk SSSR 37 (1973), [Russian]; Math. USSR-Izv. 7 (1973), 535–571.Google Scholar
[13]Klingenberg, W.. Lectures on closed geodesies. Grundlehren der Mathematischen Wissenschaften No 230, Springer: Berlin-Heidelberg-New York, 1978.Google Scholar
[14]Matthias, H. H.. Zwei Verallgemeinerungen eines Satzes von Gromoll-Meyer. Bonner Mathematische Schriften 126 (1980).Google Scholar
[15]Mercuri, F.. The critical point theory for the closed geodesic problem. Math. Z. 156 (1971), 231245.CrossRefGoogle Scholar
[16]Milnor, J.. Morse theory. Ann. of Math. Studies 51 Princeton University Press: Princeton, 1963.Google Scholar
[17]Morse, M.. The calculus of variations in the large. Amer. Math. Soc. Colloqu. Publ. No 18, Amer. Math. Soc.: Providence, 1934.Google Scholar
[18]Morse, M.. Generalized concavity theorems. Proc. N.A.S. 21 (1935), 359362.CrossRefGoogle ScholarPubMed
[19]Moser, J.. Regularization of Kepler's problem and the averaging method on a manifold. Comm. Pure Appl. Math. 23 (1970), 609636.CrossRefGoogle Scholar
[20]Pugh, C. C.. An improved closing lemma and a general density theorem. Amer. J. Math. 89 (1967), 10101021.CrossRefGoogle Scholar
[21]Robinson, R. C.. Generic properties of conservative systems. Amer. J. Math. 92 (1970), 562603.CrossRefGoogle Scholar
[22]Rund, H.. The differential geometry of Finsler spaces. Grundlehren der Mathematischen Wissenschaften No. 101, Spinger: Berlin-Heidelberg-New York 1959.Google Scholar
[23]Takens, F.. The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelmann category. Inv. Math. 6 (1968), 197244.CrossRefGoogle Scholar
[24]Thimm, T.. Integrable geodesic flows on homogeneous spaces. Ergod. Th. Dynam. Sys. 1 (1981), 495517.CrossRefGoogle Scholar
[25]Weinstein, A.. On the volume of manifolds all of whose geodesies are closed. J. Diff. Geom. 9 (1974), 513517.Google Scholar
[26]Weinstein, A.. Periodic orbits for convex Hamiltonian systems. Ann. of Math. 108 (1978), 507518.CrossRefGoogle Scholar
[27]Weinstein, A.. Bifurcation and Hamilton's principle. Math. Z. 159 (1978),, 235248.CrossRefGoogle Scholar
[28]Ziller, W.. The free loop space of globally symmetric spaces. Inv. Math. 41 (1977), 122.CrossRefGoogle Scholar