Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T19:09:01.393Z Has data issue: false hasContentIssue false

Global attractors of analytic plane flows

Published online by Cambridge University Press:  01 June 2009

VÍCTOR JIMÉNEZ LÓPEZ
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain (email: vjimenez@um.es)
DANIEL PERALTA-SALAS
Affiliation:
Departamento de Matemáticas, Universidad Carlos III, 28911 Leganés, Spain (email: dperalta@math.uc3m.es)

Abstract

In this paper the global attractors of analytic and polynomial plane flows are characterized up to homeomorphisms. Following on from previous results for continuous and differentiable dynamical systems, our theorem completes the characterization of the global attractors of plane flows.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Andronov, A. A., Leontovich, E. A., Gordon, I. I. and Maĭer, A. G.. Qualitative Theory of Second-order Dynamic Systems. Halsted Press, New York, Toronto, 1973.Google Scholar
[2]Bhatia, N. P. and Szegö, G. P.. Stability Theory of Dynamical Systems. Springer, Berlin, 1970.CrossRefGoogle Scholar
[3]Borsuk, K.. Theory of Shape. Polish Scientific Publishers, Warsaw, 1970.Google Scholar
[4]Garay, B. M.. Strong cellularity and global asymptotic stability. Fund. Math. 138 (1991), 147154.CrossRefGoogle Scholar
[5]Giraldo, A., Morón, M. A., Ruiz del Portal, F. R. and Sanjurjo, J. M. R.. Shape of global attractors in topological spaces. Nonlinear Anal. 60 (2005), 837847.CrossRefGoogle Scholar
[6]Giraldo, A. and Sanjurjo, J. M. R.. On the global structure of invariant regions of flows with asymptotically stable attractors. Math. Z. 232 (1999), 739746.CrossRefGoogle Scholar
[7]Günther, B.. Construction of differentiable flows with prescribed attractor. Topology Appl. 62 (1995), 8791.CrossRefGoogle Scholar
[8]Günther, B. and Segal, J.. Every attractor of a flow on a manifold has the shape of a finite polyhedron. Proc. Amer. Math. Soc. 119 (1993), 321329.CrossRefGoogle Scholar
[9]Gutiérrez, C.. Smoothing continuous flows on two-manifolds and recurrences. Ergod. Th. & Dynam. Sys. 6 (1986), 1744.CrossRefGoogle Scholar
[10]López, V. Jiménez and Llibre, J.. A topological characterization of the ω-limit sets for analytic flows on the plane, the sphere and the projective plane. Adv. Math. 216 (2007), 677710.CrossRefGoogle Scholar
[11]Krantz, S. G. and Parks, H. R.. A Primer of Real Analytic Functions, 2nd edn. Birkhäuser, Boston, 2002.CrossRefGoogle Scholar
[12]Kuratowski, K.. Topology, II. Academic Press, New York, 1968.Google Scholar
[13]Robinson, J. C.. Global attractors: topology and finite-dimensional dynamics. J. Dynam. Differential Equations 11 (1999), 557581.CrossRefGoogle Scholar
[14]Schecter, S. and Singer, M. F.. A class of vectorfields on S 2 that are topologically equivalent to polynomial vectorfields. J. Differential Equations 57 (1985), 406435.CrossRefGoogle Scholar
[15]Sullivan, D.. Combinatorial Invariants of Analytic Spaces (Proceedings of Liverpool Singularities Symposium, I (1969/70)). Springer, Berlin, 1971, pp. 165168.Google Scholar