Hostname: page-component-7dd5485656-bt4hw Total loading time: 0 Render date: 2025-10-26T21:07:15.388Z Has data issue: false hasContentIssue false

High-order persistence of resonant caustics in perturbed circular billiards

Published online by Cambridge University Press:  23 October 2025

COMLAN EDMOND KOUDJINAN
Affiliation:
Department of Mathematics, University of Toronto , Ontario, Canada (e-mail: koudjinanedmond@gmail.com)
RAFAEL RAMÍREZ-ROS*
Affiliation:
Departament de Matemàtiques, Universitat Politècnica de Catalunya , Barcelona, Spain

Abstract

We find necessary and sufficient conditions for high-order persistence of resonant caustics in perturbed circular billiards. The main tool is a perturbation theory based on the Bialy–Mironov generating function for convex billiards. All resonant caustics with period q persist up to order $\lceil q/n \rceil -1$ under any polynomial deformation of the circle of degree n.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avila, A., De Simoi, J. and Kaloshin, V.. An integrable deformation of an ellipse of small eccentricity is an ellipse. Ann. of Math. (2) 184 (2016), 527558.10.4007/annals.2016.184.2.5CrossRefGoogle Scholar
Baryshnikov, Y. and Zharnitsky, V.. Sub-Riemannian geometry and periodic orbits in classical billiards. Math. Res. Lett. 13 (2006), 587598.10.4310/MRL.2006.v13.n4.a8CrossRefGoogle Scholar
Bialy, M.. Convex billiards and a theorem by E. Hopf. Math. Z. 124 (1993), 147154.10.1007/BF02572397CrossRefGoogle Scholar
Bialy, M.. Gutkin billiard tables in higher dimensions and rigidity. Nonlinearity 31 (2018), 22812293.10.1088/1361-6544/aaaf4dCrossRefGoogle Scholar
Bialy, M.. Mather $\beta$ -function for ellipses and rigidity. Entropy 24 (2022), 1600.10.3390/e24111600CrossRefGoogle ScholarPubMed
Bialy, M.. Effective rigidity away from the boundary for centrally symmetric billiards. Ergod. Th. & Dynam. Sys. 44 (2024), 17411756.10.1017/etds.2023.70CrossRefGoogle Scholar
Bialy, M. and Mironov, A. E.. Angular billiard and algebraic Birkhoff conjecture. Adv. Math. 313 (2017), 102126.10.1016/j.aim.2017.04.001CrossRefGoogle Scholar
Bialy, M. and Mironov, A. E.. The Birkhoff–Poritsky conjecture for centrally-symmetric billiard tables. Ann. of Math. (2) 196 (2022), 389413.10.4007/annals.2022.196.1.2CrossRefGoogle Scholar
Bialy, M., Mironov, A. E. and Shalom, L.. Outer billiards with the dynamics of a standard shift on a finite number of invariant curves. Exp. Math. 30 (2019), 469474.10.1080/10586458.2018.1563514CrossRefGoogle Scholar
Bialy, M. and Tabachnikov, S.. Dan Reznik’s identities and more. Eur. J. Math. 8 (2022), 13411354.10.1007/s40879-020-00428-7CrossRefGoogle Scholar
Bialy, M. and Tsodikovich, D.. Locally maximising orbits for the non-standard generating function of convex billiards and applications. Nonlinearity 36 (2023), 2001.10.1088/1361-6544/acbb50CrossRefGoogle Scholar
Bialy, M. and Tsodikovich, D.. Billiard tables with rotational symmetry. Int. Math. Res. Not. IMRN 2023 (2023), 39704003.10.1093/imrn/rnab366CrossRefGoogle Scholar
Bolsinov, A., Matveev, V. S., Miranda, E. and Tabachnikov, S.. Open problems, questions and challenges in finite-dimensional integrable systems. Philos. Trans. Roy. Soc. A 376 (2018), 20170430.10.1098/rsta.2017.0430CrossRefGoogle ScholarPubMed
Chen, F. and Wang, Q.. High-order Melnikov method for time-periodic equations. Adv. Nonlinear Stud. 17 (2017), 793818.10.1515/ans-2017-6017CrossRefGoogle Scholar
Chen, F. and Wang, Q.. High order Melnikov method: theory and application. J. Differential Equations 267 (2019), 10951128.10.1016/j.jde.2019.02.003CrossRefGoogle Scholar
Cyr, V.. A number theoretic question arising in the geometry of plane curves and in billiard dynamics. Proc. Amer. Math. Soc. 140 (2012), 30353040.10.1090/S0002-9939-2012-11258-4CrossRefGoogle Scholar
Damasceno, J., Dias Carneiro, M. and Ramírez-Ros, R.. The billiard inside an ellipse deformed by the curvature flow. Proc. Amer. Math. Soc. 145 (2017), 705719.10.1090/proc/13351CrossRefGoogle Scholar
Delshams, A. and Ramírez-Ros, R.. Exponentially small splitting of separatrices for perturbed integrable standard-like maps. J. Nonlinear Sci. 8 (1998), 317352.10.1007/s003329900054CrossRefGoogle Scholar
Fierobe, C., Kaloshin, V. and Sorrentino, A.. Lecture notes on Birkhoff billiards: dynamics, integrability and spectral rigidity. Modern Aspects of Dynamical Systems. Ed. C. Bonanno, A. Sorrentino and C. Ulcigrai. Springer Nature, Berlin, 2024, pp. 157.10.1007/978-3-031-62014-0_1CrossRefGoogle Scholar
Fierobe, C. and Sorrentino, A.. On the existence of periodic invariant curves for analytic families of twist maps and billiards. Preprint, 2024, arXiv:2407.17090.Google Scholar
Gelfreich, V. G.. A proof of the exponentially small transversality of the separatrices for the standard map. Comm. Math. Phys. 201 (1999), 155216.10.1007/s002200050553CrossRefGoogle Scholar
Gutkin, E.. Capillary floating and the billiard ball problem. J. Math. Fluid Mech. 14 (2012), 363382.10.1007/s00021-011-0071-0CrossRefGoogle Scholar
Hezari, H. and Zelditch, S.. One can hear the shape of ellipses of small eccentricity. Ann. of Math. (2) 196 (2022), 10831134.10.4007/annals.2022.196.3.4CrossRefGoogle Scholar
Huang, G. and Kaloshin, V.. On the finite dimensionality of integrable deformations of strictly convex integrable billiard tables. Mosc. Math. J. 19 (2019), 307327.10.17323/1609-4514-2019-19-2-307-327CrossRefGoogle Scholar
Huang, G., Kaloshin, V. and Sorrentino, A.. Nearly circular domains which are integrable close to the boundary are ellipses. Geom. Funct. Anal. 28 (2018), 334392.10.1007/s00039-018-0440-4CrossRefGoogle Scholar
Innami, N.. Convex curves whose points are vertices of billiard triangles. Kodai Math. J. 11 (1988), 1724.10.2996/kmj/1138038814CrossRefGoogle Scholar
Kaloshin, V., Koudjinan, C. E. and Zhang, K.. Birkhoff conjecture for nearly centrally symmetric domains. Geom. Func. Anal. 34 (2024), 19732007.10.1007/s00039-024-00695-6CrossRefGoogle Scholar
Kaloshin, V. and Sorrentino, A.. On the integrability of Birkhoff billiards. Philos. Trans. Roy. Soc. A 376 (2018), 20170419.10.1098/rsta.2017.0419CrossRefGoogle ScholarPubMed
Kaloshin, V. and Sorrentino, A.. On the local Birkhoff conjecture for convex billiards. Ann. of Math. (2) 188 (2018), 315380.10.4007/annals.2018.188.1.6CrossRefGoogle Scholar
Kaloshin, V. and Sorrentino, A.. Inverse problems and rigidity questions in billiard dynamics. Ergod. Th. & Dynam. Sys. 42 (2021), 134.Google Scholar
Kaloshin, V. and Zhang, K.. Density of convex billiards with rational caustics. Nonlinearity 31 (2018), 5214.10.1088/1361-6544/aadc12CrossRefGoogle Scholar
Knill, O.. On nonconvex caustics of convex billiards. Elem. Math. 53 (1998), 89106.10.1007/s000170050038CrossRefGoogle Scholar
Lazutkin, V. F.. The existence of caustics for a billiard problem in a convex domain. Izd Akad. Nauk SSSR Ser. Mat. 37 (1973), 185214.Google Scholar
Levi, M. and Moser, J. K.. A Lagrangian proof of the invariant curve theorem for twist mappings. Proc. Symp. Pure Math. 69 (2001), 733746.10.1090/pspum/069/1858552CrossRefGoogle Scholar
Martín, P., Sauzin, D. and Seara, T. M.. Exponentially small splitting of separatrices in the perturbed McMillan map. Discrete Contin. Dyn. Syst. 31 (2011), 301372.10.3934/dcds.2011.31.301CrossRefGoogle Scholar
Martín, P., Tamarit-Sariol, A. and Ramírez-Ros, R.. On the length and area spectrum of analytic convex domains. Nonlinearity 29 (2016), 198231.10.1088/0951-7715/29/1/198CrossRefGoogle Scholar
Martín, P., Tamarit-Sariol, A. and Ramírez-Ros, R.. Exponentially small asymptotic formulas for the length spectrum in some billiard tables. Exp. Math. 25 (2016), 416440.10.1080/10586458.2015.1076361CrossRefGoogle Scholar
Meiss, J. D.. Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64 (1992), 795848.10.1103/RevModPhys.64.795CrossRefGoogle Scholar
Pinto-de-Carvalho, S. and Ramírez-Ros, R.. Nonpersistence of resonant caustics in perturbed elliptic billiards. Ergod. Th. & Dynam. Sys. 33 (2013), 18761890.10.1017/S0143385712000417CrossRefGoogle Scholar
Popov, G.. Invariants of the length spectrum and spectral invariants of planar convex domains. Comm. Math. Phys. 161 (1994), 335364.10.1007/BF02099782CrossRefGoogle Scholar
Ramírez-Ros, R.. Break-up of resonant invariant curves in billiards and dual billiards associated to perturbed circular tables. Physica D 214 (2006), 278287.10.1016/j.physd.2005.12.007CrossRefGoogle Scholar
Tabachnikov, S.. Billiards (Panorama Synthétique, 1). SMF, Paris, 1995.Google Scholar
Wang, Q.. Exponentially small splitting: a direct approach. J. Differential Equations 269 (2020), 9541036.10.1016/j.jde.2019.12.028CrossRefGoogle Scholar
Zhang, J.. Coexistence of period 2 and 3 caustics for deformative nearly circular billiard maps. Discrete Contin. Dyn. Syst. 39 (2019), 64196440.10.3934/dcds.2019278CrossRefGoogle Scholar