We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
[1]
Adams, C., Hindman, N. and Strauss, D.. Largeness of the set of finite products in a semigroup. Semigroup Forum76 (2008), 276–296.10.1007/s00233-007-9006-8Google Scholar
[2]
Barber, B., Hindman, N., Leader, I. and Strauss, D.. Distinguishing subgroups of the rationals by their Ramsey properties. J. Combin. Theory Ser. A129 (2014), 93–104.10.1016/j.jcta.2014.10.002Google Scholar
[3]
Barber, B., Hindman, N., Leader, I. and Strauss, D.. Partition regularity without the columns property. Proc. Amer. Math. Soc.143 (2015), 3387–3399.10.1090/S0002-9939-2015-12519-1Google Scholar
[4]
Barge, M. and Zamboni, L.. Central sets and substitutive dynamical systems. Adv. Math.248 (2013), 308–323.10.1016/j.aim.2013.08.003Google Scholar
[5]
Beiglböck, M.. A multidimensional central sets theorem. Combin. Probab. Comput.15 (2006), 807–814.10.1017/S0963548306007826Google Scholar
[6]
Beiglböck, M., Bergelson, V., Downarowicz, T. and Fish, A.. Solvability of Rado systems in D-sets. Topology Appl.156 (2009), 2565–2571.10.1016/j.topol.2009.04.019Google Scholar
[7]
Beiglböck, M., Bergelson, V., Hindman, N. and Strauss, D.. Multiplicative structures in additively large sets. J. Combin. Theory Ser. A113 (2006), 1219–1242.10.1016/j.jcta.2005.11.003Google Scholar
[8]
Beiglböck, M., Bergelson, V., Hindman, N. and Strauss, D.. Some new results in multiplicative and additive Ramsey theory. Trans. Amer. Math. Soc.360 (2008), 819–847.10.1090/S0002-9947-07-04370-XGoogle Scholar
[9]
Bergelson, V.. Minimal idempotents and ergodic Ramsey theory. Topics in Dynamics and Ergodic Theory(London Mathematical Society Lecture Note Series, 310). Cambridge University Press, Cambridge, 2003, pp. 8–39.10.1017/CBO9780511546716.004Google Scholar
[10]
Bergelson, V., Blass, A. and Hindman, N.. Partition theorems for spaces of variable words. Proc. Lond. Math. Soc. (3)68 (1994), 449–476.Google Scholar
[11]
Bergelson, V. and Downarowicz, T.. Large sets of integers and hierarchy of mixing properties of measure preserving systems. Colloq. Math.110 (2008), 117–150.Google Scholar
[12]
Bergelson, V. and Hindman, N.. Nonmetrizable topological dynamics and Ramsey theory. Trans. Amer. Math. Soc.320 (1990), 293–320.Google Scholar
[13]
Bergelson, V. and Hindman, N.. Ramsey theory in non-commutative semigroups. Trans. Amer. Math. Soc.330 (1992), 433–446.10.1090/S0002-9947-1992-1069744-5Google Scholar
[14]
Bergelson, V. and Hindman, N.. On IP*-sets and central sets. Combinatorica14 (1994), 269–277.10.1007/BF01212975Google Scholar
[15]
Bergelson, V. and Hindman, N.. Partition regular structures contained in large sets are abundant. J. Combin. Theory Ser. A93 (2001), 18–36.10.1006/jcta.2000.3061Google Scholar
[16]
Bergelson, V., Hindman, N. and Kra, B.. Iterated spectra of numbers—elementary, dynamical and algebraic approaches. Trans. Amer. Math. Soc.348 (1996), 893–912.10.1090/S0002-9947-96-01533-4Google Scholar
[17]
Bergelson, V., Hindman, N. and Leader, I.. Additive and multiplicative Ramsey theory in the reals and the rationals. J. Combin. Theory Ser. A85 (1999), 41–68.10.1006/jcta.1998.2892Google Scholar
[18]
Bergelson, V., Hindman, N. and Strauss, D.. Polynomials at iterated spectra near zero. Topology Appl.158 (2011), 1815–1830.Google Scholar
[19]
Bergelson, V. and McCutcheon, R.. Central sets and a non-commutative Roth theorem. Amer. J. Math.129 (2007), 1251–1275.10.1353/ajm.2007.0031Google Scholar
[20]
Bucci, M., Puzynina, S. and Zamboni, L.. Central sets generated by uniformly recurrent words. Ergod. Th. & Dynam. Sys.35 (2015), 714–736.10.1017/etds.2013.69Google Scholar
[21]
Burns, S. and Hindman, N.. Quasi-central sets and their dynamical characterization. Topology Proc.31 (2007), 445–455.Google Scholar
[22]
Carlson, T., Hindman, N., McLeod, J. and Strauss, D.. Almost disjoint large subsets of semigroups. Topology Appl.155 (2008), 433–444.10.1016/j.topol.2005.05.012Google Scholar
[23]
Carlson, T., Hindman, N. and Strauss, D.. Ramsey theoretic consequences of some new results about algebra in the Stone–Čech compactification. Integers5 (2005), A04, 1–26.Google Scholar
[24]
Carlson, T., Hindman, N. and Strauss, D.. An infinitary extension of the Graham–Rothschild parameter sets theorem. Trans. Amer. Math. Soc.358 (2006), 3239–3262.10.1090/S0002-9947-06-03899-2Google Scholar
[25]
De, D. and Hindman, N.. Image partition regularity near zero. Discrete Math.309 (2009), 3219–3232.10.1016/j.disc.2008.09.023Google Scholar
[26]
De, D., Hindman, N. and Strauss, D.. A new and stronger central sets theorem. Fund. Math.199 (2008), 155–175.Google Scholar
[27]
De, D. and Paul, R.. Image partition regularity of matrices near 0 with real entries. New York J. Math.17 (2011), 149–161.Google Scholar
Deuber, W. and Hindman, N.. Partitions and sums of (m, p, c)-sets. J. Combin. Theory Ser. A45 (1987), 300–302.10.1016/0097-3165(87)90020-3Google Scholar
[30]
Farah, I., Hindman, N. and McLeod, J.. Partition theorems for layered partial semigroups. J. Combin. Theory Ser. A98 (2002), 268–311.Google Scholar
[31]
Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorical Number Theory. Princeton University Press, Princeton, NJ, 1981.10.1515/9781400855162Google Scholar
[32]
Furstenberg, H. and Katznelson, Y.. An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J. Anal. Math.45 (1985), 117–168.Google Scholar
[33]
Furstenberg, H. and Katznelson, Y.. Idempotents in compact semigroups and Ramsey theory. Israel J. Math.68 (1989), 257–270.10.1007/BF02764984Google Scholar
[34]
Furstenberg, H. and Weiss, B.. Topological dynamics and combinatorial number theory. J. Anal. Math.34 (1978), 61–85.10.1007/BF02790008Google Scholar
[35]
Glasner, S.. Divisibility properties and the Stone–Čech compactification. Canad. J. Math.32 (1980), 993–1007.Google Scholar
[36]
Graham, R., Lin, S. and Lin, C.. Spectra of numbers. Math. Mag.51 (1978), 174–176.10.1080/0025570X.1978.11976703Google Scholar
[37]
Graham, R. and Rothschild, B.. Ramsey’s theorem for n-parameter sets. Trans. Amer. Math. Soc.159 (1971), 257–292.Google Scholar
[38]
Hales, A. and Jewett, R.. Regularity and positional games. Trans. Amer. Math. Soc.106 (1963), 222–229.Google Scholar
[39]
Hindman, N.. Image partition regularity over the reals. New York J. Math.9 (2003), 79–91.Google Scholar
[40]
Hindman, N.. Small sets satisfying the central sets theorem. Combinatorial Number Theory. Walter de Gruyter, Berlin, 2009, pp. 57–63.Google Scholar
[41]
Hindman, N. and Johnson, J.. Images of C sets and related large sets under nonhomogeneous spectra. Integers12A (2012), A2.Google Scholar
[42]
Hindman, N., Jones, L. and Peters, M.. Left large subsets of free semigroups and groups that are not right large. Semigroup Forum90 (2015), 374–385.10.1007/s00233-014-9622-zGoogle Scholar
[43]
Hindman, N. and Leader, I.. Image partition regularity of matrices. Combin. Probab. Comput.2 (1993), 437–463.10.1017/S0963548300000821Google Scholar
[44]
Hindman, N. and Leader, I.. The semigroup of ultrafilters near 0. Semigroup Forum59 (1999), 33–55.Google Scholar
[45]
Hindman, N., Leader, I. and Strauss, D.. Infinite partition regular matrices—solutions in central sets. Trans. Amer. Math. Soc.355 (2003), 1213–1235.10.1090/S0002-9947-02-03191-4Google Scholar
[46]
Hindman, N., Leader, I. and Strauss, D.. Image partition regular matrices—bounded solutions and preservation of largeness. Discrete Math.242 (2002), 115–144.10.1016/S0012-365X(01)00276-XGoogle Scholar
[47]
Hindman, N., Leader, I. and Strauss, D.. Extensions of infinite partition regular systems. Electron. J. Combin.22(2) (2015), #P2.29.Google Scholar
[48]
Hindman, N. and Lisan, A.. Points very close to the smallest ideal of 𝛽S. Semigroup Forum49 (1994), 137–141.10.1007/BF02573479Google Scholar
[49]
Hindman, N., Maleki, A. and Strauss, D.. Central sets and their combinatorial characterization. J. Combin. Theory Ser. A74 (1996), 188–208.10.1006/jcta.1996.0048Google Scholar
[50]
Hindman, N. and Strauss, D.. Infinite partition regular matrices, II—extending the finite results. Topology Proc.25 (2000), 217–255.Google Scholar
[51]
Hindman, N. and Strauss, D.. A simple characterization of sets satisfying the central sets theorem. New York J. Math.15 (2009), 405–413.Google Scholar
[52]
Hindman, N. and Strauss, D.. Cartesian products of sets satisfying the central sets theorem. Topology Proc.35 (2010), 203–223.Google Scholar
[53]
Hindman, N. and Strauss, D.. Algebra in the Stone–Čech Compactification: Theory and Applications, 2nd edn. de Gruyter, Berlin, 2012.Google Scholar
[54]
Hindman, N. and Strauss, D.. Separating Milliken–Taylor systems in ℚ. J. Combinatorics5 (2014), 305–333.10.4310/JOC.2014.v5.n3.a3Google Scholar
[55]
Hindman, N., Strauss, D. and Zelenyuk, Y.. Large rectangular semigroups in Stone–Čech compactifications. Trans. Amer. Math. Soc.355 (2003), 2795–2812.10.1090/S0002-9947-03-03276-8Google Scholar
[56]
Hindman, N. and Woan, W.. Central sets in semigroups and partition regularity of systems of linear equations. Mathematika40 (1993), 169–186.10.1112/S0025579300006963Google Scholar
Johnson, J.. A new and simpler noncommutative central sets theorem. Topology Appl.189 (2015), 10–24.10.1016/j.topol.2015.03.006Google Scholar
[59]
Li, J.. Dynamical characterization of C-sets and its application. Fund. Math.216 (2012), 259–286.10.4064/fm216-3-4Google Scholar
[60]
McLeod, J.. Central sets in commutative adequate partial semigroups. Topology Proc.29 (2005), 567–576.Google Scholar
[61]
Milliken, K.. Ramsey’s theorem with sums or unions. J. Combin. Theory Ser. A18 (1975), 276–290.10.1016/0097-3165(75)90039-4Google Scholar
[62]
Polya, G.. Untersuchungen über Lücken und Singularitaten von Potenzreihen. Math. Z.29 (1929), 549–640.10.1007/BF01180553Google Scholar
[63]
Rado, R.. Studien zur Kombinatorik. Math. Z.36 (1933), 242–280.Google Scholar
[64]
Shi, H. and Yang, H.. Nonmetrizable topological dynamical characterization of central sets. Fund. Math.150 (1996), 1–9.10.4064/fm-150-1-1-9Google Scholar
[65]
Taylor, A.. A canonical partition relation for finite subsets of 𝜔. J. Combin. Theory Ser. A21 (1976), 137–146.Google Scholar
[66]
Zelenyuk, Y.. Principal left ideals of 𝛽G may be both minimal and maximal. Bull. Lond. Math. Soc.45 (2013), 613–617.10.1112/blms/bds127Google Scholar
[67]
Zelenyuk, Y.. Left maximal idempotents in G∗. Adv. Math.262 (2014), 593–603.Google Scholar