Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:14:43.550Z Has data issue: false hasContentIssue false

Le théorème limite central pour les suites de R. C. Baker

Published online by Cambridge University Press:  30 March 2001

KATUSI FUKUYAMA
Affiliation:
Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan. (e-mail: fukuyama@math.kobe-u.ac.jp)
BERNARD PETIT
Affiliation:
Département de Mathématiques, Université de Bretagne Occidentale, U.F.R. Sciences et Techniques, B.P. 809, 29285 Brest Cedex, France. (e-mail: petit@univ-brest.fr)

Abstract

Let D=(\omega_n)_{n\ge0} be the multiplicative semi-group generated by the coprime integers q_1,\dotsc, q_\tau arranged in increasing order. If f is a real-valued 1-periodic function, we consider the sums S_nf(t)=\sum_{0\le k<n} f(\omega_kt). For a large class of functions, we prove the existence of a limiting variance \sigma^2 for the sequence \{S_nf/\sqrt n\}, we give a function characterization for the case when \sigma=0 and finally we prove a central limit theorem.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)