Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:38:04.077Z Has data issue: false hasContentIssue false

Mean equicontinuity and mean sensitivity on cellular automata

Published online by Cambridge University Press:  03 November 2020

LUGUIS DE LOS SANTOS BAÑOS
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78290San Luis, SLP, Mexico (e-mail: luguis.sb.25@gmail.com)
FELIPE GARCÍA-RAMOS*
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78290San Luis, SLP, Mexico (e-mail: luguis.sb.25@gmail.com) CONACyT, Mexico City, Mexico

Abstract

We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akin, E., Auslander, J. and Berg, K.. When is a transitive map chaotic? Convergence in Ergodic Theory and Probability. Walter de Gruyter & Co., Berlin, 1996, pp. 2540.CrossRefGoogle Scholar
Auslander, J. and Yorke, J. A.. Interval maps, factors of maps, and chaos. Tohoku Math. J. 32(2) (1980), 177188.CrossRefGoogle Scholar
Blanchard, F., Formenti, E. and Kurka, P.. Cellular automata in the Cantor, Besicovitch, and Weyl topological spaces. Complex Syst. 11(2) (1997), 107124.Google Scholar
Blanchard, F. and Tisseur, P.. Some properties of cellular automata with equicontinuity points. Ann. Inst. Henri Poincaré Probab. Stat. 36(5) (2000), 569582.CrossRefGoogle Scholar
Downarowicz, T. and Glasner, E.. Isomorphic extensions and applications. Topol. Methods Nonlinear Anal. 48(1) (2016), 321338.Google Scholar
Fomin, S.. On dynamical systems with pure point spectrum. Dokl. Akad. Nauk SSSR 77(4) (1951), 2932 (in Russian).Google Scholar
Fuhrmann, G., Gröger, M. and Lenz, D.. The structure of mean equicontinuous group actions. Preprint, 2018, arXiv:1812.10219.Google Scholar
García-Ramos, F.. Limit behaviour of $\mu$ -equicontinuous cellular automata. Theoret. Comput. Sci. 623 (2016), 214.CrossRefGoogle Scholar
García-Ramos, F.. Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. Ergod. Th. & Dynam. Sys. 37(4) (2017), 12111237.CrossRefGoogle Scholar
García-Ramos, F., Jäger, T. and Ye, X.. Mean equicontinuity, almost automorphy and regularity. Israel J. Math., to appear.Google Scholar
García-Ramos, F., Li, J. and Zhang, R.. When is a dynamical system mean sensitive? Ergod. Th. & Dynam. Sys. 39(6) (2019), 16081636.CrossRefGoogle Scholar
Gilman, R. H.. Classes of linear automata. Ergod. Th. & Dynam. Sys. 7(1) (1987), 105118.CrossRefGoogle Scholar
Guckenheimer, J.. Sensitive dependence to initial conditions for one dimensional maps. Comm. Math. Phys. 70(2) (1979), 133160.CrossRefGoogle Scholar
Huang, W., Li, J., Thouvenot, J.-P., Xu, L. and Ye, X.. Bounded complexity, mean equicontinuity and discrete spectrum. Ergod. Th. & Dynam. Sys., to appear.Google Scholar
Kurka, P.. Languages, equicontinuity and attractors in cellular automata. Ergod. Th. & Dynam. Sys., 17(2) (1997), 417433.CrossRefGoogle Scholar
Kurka, P.. Topological and Symbolic Dynamics (Cours Specials, 11). Société Mathématique de France, Paris, 2003.Google Scholar
Li, J., Tu, S. and Ye, X.. Mean equicontinuity and mean sensitivity. Ergod. Th. & Dynam. Sys. 35(8) (2015), 25872612.CrossRefGoogle Scholar
Li, J., Ye, X. and Yu, T.. Mean equicontinuity, bounded complexity and applications. Discrete Contin. Dyn. Syst. A, 25., in press.Google Scholar
Martin, B.. Damage spreading and $\mu$ -sensitivity on cellular automata. Ergod. Th. & Dynam. Sys. 27(2) (2007), 545565.CrossRefGoogle Scholar
Oxtoby, J. C.. Ergodic sets. Bull. Amer. Math. Soc. 58(2) (1952), 116136.CrossRefGoogle Scholar
Sablik, M.. Directional dynamics for cellular automata: a sensitivity to initial condition approach. Theoret. Comput. Sci. 400(1–3) (2008), 118. CrossRefGoogle Scholar