Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:37:04.998Z Has data issue: false hasContentIssue false

Multiple recurrence for two commuting transformations

Published online by Cambridge University Press:  23 June 2010

QING CHU*
Affiliation:
Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050, Université Paris-Est, 77454 Marne la Vallée cedex 2, France (email: qing.chu@univ-mlv.fr)

Abstract

This paper is devoted to a study of the multiple recurrence of two commuting transformations. We derive a result which is similar but not identical to that established by Bergelson, Host and Kra for one single transformation. We use the machinery of ‘magic systems’ established recently by B. Host for the proof.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Austin, T.. On the norm convergence of non-conventional ergodic averages. Preprint, arXiv:0805.0320v3. Ergod. Th. & Dynam. Sys. to appear.Google Scholar
[2]Atkinson, F. V., Watterson, G. A. and Moran, P. A. P.. A matrix inequality. Q. J. Math. Oxford Ser. (2) 11 (1960), 137140.CrossRefGoogle Scholar
[3]Bergelson, V. and Leibman, A.. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc. 9(3) (1996), 725753.CrossRefGoogle Scholar
[4]Bergelson, V., Host, B. and Kra, B.. Multiple recurrence and nilsequences. Invent. Math. 160 (2005), 261303. With an appendix by I. Ruzsa.CrossRefGoogle Scholar
[5]Chu, Q.. Convergence of multiple ergodic averages along cubes for several commuting transformations. Studia Math. 196(1) (2009), 1322.CrossRefGoogle Scholar
[6]Chu, Q., Frantzikinakis, N. and Host, B.. Commuting averages with polynomial iterates of distinct degrees. Preprint, arXiv:0912.2641v1.Google Scholar
[7]Frantzikinakis, N.. Multiple ergodic averages for three polynomials and applications. Trans. Amer. Math. Soc. 360(10) (2008), 54355475.CrossRefGoogle Scholar
[8]Frantzikinakis, N. and Kra, B.. Ergodic averages for independent polynomials and applications. J. Lond. Math. Soc. (2) 74(1) (2006), 131142.CrossRefGoogle Scholar
[9]Furstenberg, H.. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31 (1977), 204256.CrossRefGoogle Scholar
[10]Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory (M. B. Porter Lectures 1978). Princeton University Press, Princeton, NJ, 1981.CrossRefGoogle Scholar
[11]Furstenberg, H. and Katznelson, Y.. An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math. 34 (1978), 275291.CrossRefGoogle Scholar
[12]Host, B.. Ergodic seminorms for commuting transformations and applications. Studia Math. 195(1) (2009), 3149.CrossRefGoogle Scholar
[13]Host, B. and Kra, B.. Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1) (2005), 397488.CrossRefGoogle Scholar
[14]Khintchine, A. Y.. Eine Verschärfung des Poincaréschen ‘Wiederkehr-Satzes’. Compositio Math. 1 (1934), 177179.Google Scholar
[15]Sidorenko, A.. A correlation inequality for bipartite graphs. Graphs Combin. 9(2) (1993), 201204.CrossRefGoogle Scholar
[16]Sidorenko, A.. An analytic approach to extremal problems for graphs and hypergraphs. Extremal Problems for Finite Sets (Visegrád, 1991) (Bolyai Society Mathematical Studies, 3). János Bolyai Math. Soc., Budapest, 1994, pp. 423455.Google Scholar
[17]Tao, T.. Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Th. & Dynam. Sys. 28 (2008), 657688.CrossRefGoogle Scholar
[18]Towsner, H.. Convergence of diagonal ergodic averages. Ergod. Th. & Dynam. Sys. 29(4) (2009), 13091326.CrossRefGoogle Scholar