1 Introduction
In this paper, we study the non-integrability of the circular restricted three-body problem for the planar case,
and for the spatial case,
where
The systems (1.1) and (1.2) are Hamiltonian with the Hamiltonians
and
respectively, and represent the dimensionless equations of motion of the third massless body subjected to the gravitational forces from the two primary bodies with mass $\mu $ and $1-\mu $ which remain at $(1-\mu ,0)$ and $(-\mu ,0)$ , respectively, on the $xy$ -plane in the rotational frame, under the assumption that the primaries rotate counterclockwise on the circles about their common center of mass at the origin in the inertial coordinate frame (see Figure 1). Their non-integrability means that equation (1.1) (respectively equation (1.2)) does not have one first integral (respectively two first integrals) which is (respectively are) functionally independent of the Hamiltonian $H_2$ (respectively $H_3$ ). See [Reference Arnold3, Reference Morales-Ruiz20] for the definition of integrability of general Hamiltonian systems, and, e.g., [Reference Meyer and Offin19, §4.1] for more details on the derivation and physical meaning of equations (1.1) and (1.2).
The problem of non-integrability of equations (1.1) and (1.2) is very classical and important in the theory of dynamical systems. In his famous memoir [Reference Poincaré29], which was related to a prize competition celebrating the 60th birthday of King Oscar II, Henri Poincaré studied the planar case and discussed the non-existence of a first integral which is analytic in the state variables and parameter $\mu $ near $\mu =0$ and functionally independent of the Hamiltonian. His approach was improved significantly in the first volume of his masterpieces [Reference Poincaré30] published two years later: he showed the non-existence of such a first integral for the restricted three-body problem in the planar case. See [Reference Barrow-Green6] for an account of his work from mathematical and historical perspectives. His result was also explained in [Reference Arnold, Kozlov and Neishtadt4, Reference Kozlov14, Reference Kozlov15, Reference Whittaker38]. Moreover, remarkable progress has been made on the planar problem (1.1) in a different direction recently: Guardia et al [Reference Guardia, Martín and Seara12] showed the occurrence of transverse intersection between the stable and unstable manifolds of the infinity for any $\mu \in (0,1)$ in a region far from the primaries in which $r=\sqrt {x^2+y^2}$ and its conjugate momentum are sufficiently large. This implies, e.g., by [Reference Moser26, Theorem 3.10], the real-analytic non-integrabilty of equation (1.1) as well as the existence of oscillatory motions such that $\limsup _{t\to \infty }r(t)=\infty $ while $\liminf _{t\to \infty }r(t)<\infty $ . Similar results were obtained much earlier when $\mu>0$ is sufficiently small in [Reference Llibre and Simó16] and for any $\mu \in (0,1)$ except for a certain finite number of the values in [Reference Xia40]. Note that these results immediately say nothing about the non-integrability of the spatial problem (1.2).
Moreover, the non-integrability of the general three-body problem is now well understood, in comparison with the restricted one. Tsygvintsev [Reference Tsygvintsev32, Reference Tsygvintsev33] proved the non-integrability of the general planar three-body problem near the Lagrangian parabolic orbits in which the three bodies form an equilateral triangle and move along certain parabolas, using Ziglin’s method [Reference Ziglin45]. Boucher and Weil [Reference Boucher, Weil, Fauvet and Mitschi9] also obtained a similar result, using the Morales–Ramis theory [Reference Morales-Ruiz20, Reference Morales-Ruiz and Ramis22], which is considered as an extension of the Ziglin method, while it was proven for the case of equal masses a little earlier in [Reference Boucher8]. Moreover, Tsygvintsev [Reference Tsygvintsev34–Reference Tsygvintsev36] proved the non-existence of a single additional first integral near the Lagrangian parabolic orbits when
where $m_j$ represents the mass of the jth body for $j=1,2,3$ . Subsequently, Morales-Ruiz and Simon [Reference Morales-Ruiz and Simon25] succeeded in removing the three exceptional cases and extended the result to the space of three or more dimensions. Ziglin [Reference Ziglin46] also proved the non-integrability of the general three-body problem near a collinear solution which was used by Yoshida [Reference Yoshida43] for the problem in the one-dimensional space much earlier, in the space of any dimension when two of the three masses, say $m_1,m_2$ , are nearly equal but neither $m_3/m_1$ nor $m_3/m_2\in \{11/12,1/4,1/24\}$ . Maciejewski and Przybylska [Reference Maciejewski and Przybylska17] discussed the three-body problem with general homogeneous potentials. It should be noted that Ziglin [Reference Ziglin46] and Morales-Ruiz and Simon [Reference Morales-Ruiz and Simon25] also discussed the general N-body problem. We remark that these results say nothing about the non-integrability of the restricted three-body problem obtained by limiting manipulation from the general one. In particular, there exists no non-constant solution corresponding to the Lagrangian parabolic orbits or collinear solutions in the restricted one.
Here we show the non-integrability of the three-body problems (1.1) and (1.2) near the primaries for any $\mu \in (0,1)$ fixed. To state our result precisely, we use the following treatment originally made in [Reference Combot10]. We first introduce the new variables $u_1,u_2\in \mathbb {C}$ given by
and
and regard equations (1.1) and (1.2) as Hamiltonian systems on the four- and six-dimensional complex manifolds (algebraic varieties)
and
respectively. Let $\pi _2:\mathscr {S}_2\to \mathbb {C}^4$ and $\pi _3:\mathscr {S}_3\to \mathbb {C}^6$ be the projections such that
and
and let
Note that $\pi _2$ and $\pi _3$ are singular on $\Sigma (\mathscr {S}_2)$ and $\Sigma (\mathscr {S}_3)$ , respectively. The sets $\Sigma (\mathscr {S}_2)$ and $\Sigma (\mathscr {S}_3)$ are called the critical sets of $\mathscr {S}_2$ and $\mathscr {S}_3$ , respectively. The systems (1.1) and (1.2) are respectively rewritten as
and
which are rational on $\mathscr {S}_2$ and $\mathscr {S}_3$ . We prove the following theorem.
Theorem 1.1. The circular restricted three-body problem (1.1) (respectively (1.2)) does not have a complete set of first integrals in involution that are functionally independent almost everywhere and meromorphic in $(x,y,p_x,p_y,u_1,u_2)$ (respectively in $(x,y,z,p_x,p_y,p_z,u_1,u_2))$ except on $\Sigma (\mathscr {S}_2)$ (respectively on $\Sigma (\mathscr {S}_3))$ in punctured neighborhoods of
for any $\mu \in (0,1)$ , as Hamiltonian systems on $\mathscr {S}_2$ (respectively on $\mathscr {S}_3)$ .
Proofs of Theorem 1.1 are given in §3 for the planar case of equation (1.1) and in §4 for the spatial case of equation (1.2). Our basic tool of the proofs is a technique developed in §2 for
where $\ell ,m\in \mathbb {N}$ , $\mathbb {T}^m=(\mathbb {R}/2\pi \mathbb {Z})^m$ , $\varepsilon $ is a small parameter such that $0<|\varepsilon |\ll 1$ , and $\omega :\mathbb {R}^\ell \to \mathbb {R}^m$ , $h:\mathbb {R}^\ell \times \mathbb {T}^m\times \mathbb {R}\to \mathbb {R}^\ell $ and $g:\mathbb {R}^\ell \times \mathbb {T}^m\times \mathbb {R}\to \mathbb {R}^m$ are meromorphic in their arguments. The system (1.5) is Hamiltonian if $\varepsilon =0$ or
as well as $\ell =m$ , and non-Hamiltonian if not. The developed technique enables us to determine whether the system (1.5) is not meromorphically integrable in the Bogoyavlenskij sense [Reference Bogoyavlenskij7] (see Definition 1.2) such that the first integrals and commutative vector fields also depend meromorphically on $\varepsilon $ near $\varepsilon =0$ , like the result of Poincaré [Reference Poincaré29, Reference Poincaré30] stated above, when the domains of the independent and dependent variables are extended to regions in $\mathbb {C}$ and $\mathbb {C}^\ell \times (\mathbb {C}/2\pi \mathbb {Z})^m$ , respectively. The general definition of integrability adopted here is precisely stated as follows.
Definition 1.2. (Bogoyavlenskij)
For $n\in \mathbb {N}$ , an n-dimensional dynamical system
is called $(q,n-q)$ -integrable or simply integrable if there exist q vector fields $f_1(x)(:= f(x)),f_2(x),\ldots ,f_q(x)$ and $n-q$ scalar-valued functions $F_1(x),\ldots ,F_{n-q}(x)$ such that the following two conditions hold:
-
(i) $f_1(x),\ldots ,f_q(x)$ are linearly independent almost everywhere and commute with each other, that is, $[f_j,f_k](x):=\mathrm {D} f_k(x)f_j(x)-\mathrm {D} f_j(x)f_k(x)\equiv 0$ for $j,k=1,\ldots ,q$ , where $[\cdot ,\cdot ]$ denotes the Lie bracket;
-
(ii) the derivatives $\mathrm {D} F_1(x),\ldots , \mathrm {D} F_{n-q}(x)$ are linearly independent almost everywhere and $F_1(x),\ldots ,F_{n-q}(x)$ are first integrals of $f_1, \ldots ,f_q$ , that is, $\mathrm {D} F_k(x)\cdot f_j(x)\equiv 0$ for $j=1,\ldots ,q$ and $k=1,\ldots ,n-q$ , where ‘ $\cdot $ ’ represents the inner product.
We say that the system is meromorphically integrable if the first integrals and commutative vector fields are meromorphic.
Definition 1.2 is considered as a generalization of Liouville-integrability for Hamiltonian systems [Reference Arnold3, Reference Morales-Ruiz20] since an n-degree-of-freedom Liouville-integrable Hamiltonian system with $n\ge 1$ has not only n functionally independent first integrals but also n linearly independent commutative (Hamiltonian) vector fields generated by the first integrals. When $\varepsilon =0$ , the system (1.5) is meromorphically $(m,\ell )$ -integrable in the Bogoyavlenskij sense: $F_j(I,\theta )=I_j$ , $j=1,\ldots ,\ell $ , are first integrals and $f_j(I,\theta )=(0,e_j)\in \mathbb {R}^\ell \times \mathbb {R}^m$ , $j=2,\ldots ,m$ , give m commutative vector fields along with its own vector field, where $e_j$ is the m-dimensional vector of which the jth element is the unit and the other ones are zero. Conversely, a general $(m,\ell )$ -integrable system is transformed to the form (1.5) with $\varepsilon =0$ if the level set of the first integrals $F_1(x),\ldots ,F_m(x)$ has a connected compact component. See [Reference Bogoyavlenskij7, Reference Zung47] for more details. Thus, the system (1.5) can be regarded as a normal form for perturbations of general $(m,\ell )$ -integrable systems.
Systems of the form (1.5) have attracted much attention, especially when they are Hamiltonian. See [Reference Arnold3, Reference Arnold, Kozlov and Neishtadt4, Reference Kozlov15] and references therein for more details. In particular, Kozlov [Reference Kozlov15] extended the famous result of Poincaré [Reference Poincaré29, Reference Poincaré30] for Hamiltonian systems to the general analytic case of equation (1.5) and gave sufficient conditions for the non-existence of additional real-analytic first integrals depending analytically on $\varepsilon $ near $\varepsilon =0$ . See also [Reference Arnold, Kozlov and Neishtadt4, Reference Kozlov14] for his result in Hamiltonian systems. Moreover, Motonaga and Yagasaki [Reference Motonaga and Yagasaki27] gave sufficient conditions for real-analytic non-integrability of general nearly integrable systems in the Bogoyavlenskij sense such that the first integrals and commutative vector fields also depend real-analytically on $\varepsilon $ near $\varepsilon =0$ . The technique developed in §2 is different from them and based on generalized versions due to Ayoul and Zung [Reference Ayoul and Zung5] of the Morales–Ramis and Morales–Ramis–Simó theories [Reference Morales-Ruiz20, Reference Morales-Ruiz and Ramis22, Reference Morales-Ruiz, Ramis and Simó23]. See [Reference Yagasaki41, Appendix A] for a brief review of the previous results and their comparison with the developed technique. Our technique can also be applied to several nearly integrable systems containing time-periodic perturbation of single-degree-of-freedom Hamiltonian systems such as the periodically forced Duffing oscillator and pendulum [Reference Motonaga and Yagasaki28, Reference Yagasaki41]. Moreover, it can be used directly to give a new proof of Poincaré’s result of [Reference Poincaré30] on the restricted three-body problem [Reference Yagasaki42]. The systems (1.1) and (1.2) are transformed to the form (1.5) in the punctured neighborhoods in Theorem 1.1 and the technique is applied to them. We emphasize that our results are not just applications of the Morales–Ramis and Morales–Ramis–Simó theories or their generalized versions.
2 Determination of non-integrability for equation (1.5)
In this section, we give a technique for determining whether the system (1.5) is not meromorphically Bogoyavlenskij-integrable such that the first integrals and commutative vector fields also depend meromorphically on $\varepsilon $ near $\varepsilon =0$ .
When $\varepsilon =0$ , equation (1.5) becomes
We assume the following on the unperturbed system (2.1).
-
(A1) For some $I^\ast \in \mathbb {R}^\ell $ , a resonance of multiplicity $m-1$ ,
$$ \begin{align*} \dim_{\mathbb{Q}}\langle\omega_1(I^\ast),\ldots,\omega_m(I^\ast)\rangle=1, \end{align*} $$occurs with $\omega (I^\ast )\neq 0$ , that is, there exists a constant $\omega ^\ast>0$ such that$$ \begin{align*} \frac{\omega(I^\ast)}{\omega^\ast}\in\mathbb{Z}^m\setminus\{0\}, \end{align*} $$where $\omega _j(I)$ is the jth element of $\omega (I)$ for $j=1,\ldots ,m$ .
Note that we can replace $\omega ^\ast $ with $\omega ^\ast /n$ for any $n\in \mathbb {N}$ in assumption (A1). We refer to the m-dimensional torus $\mathscr {T}^\ast =\{(I^\ast ,\theta )\mid \theta \in \mathbb {T}^m\}$ as the resonant torus and to periodic orbits $(I,\theta )=(I^\ast ,\omega (I^\ast )t+\theta _0)$ , $\theta _0\in \mathbb {T}^m$ , on $\mathscr {T}^\ast $ as the resonant periodic orbits. Let $T^\ast =2\pi /\omega ^\ast $ . We also make the following assumption.
-
(A2) For some $k\in \mathbb {Z}_{\ge 0}:=\mathbb {N}\cup \{0\}$ and $\theta \in \mathbb {T}^m$ , there exists a closed loop $\gamma _\theta $ in a region including $(0,T^\ast )\subset \mathbb {R}$ in $\mathbb {C}$ such that $\gamma _\theta \cap (i\mathbb {R}\cup (T^\ast +i\mathbb {R}))=\emptyset $ and
(2.2) $$ \begin{align} \mathscr{I}^k(\theta):=\frac{1}{k!}\mathrm{D}\omega(I^\ast)\int_{\gamma_\theta} \mathrm{D}_\varepsilon^k h(I^\ast,\omega(I^\ast)\tau+\theta;0)\,d\tau \end{align} $$is not zero (see Figure 2).
Note that the condition $\gamma _\theta \cap (i\mathbb {R}\cup (T^\ast +i\mathbb {R}))=\emptyset $ is not essential in assumption (A2), since it always holds by replacing $\omega ^\ast $ with $\omega ^\ast /n$ for sufficiently large $n\in \mathbb {N}$ if necessary. We prove the following theorem which guarantees that conditions (A1) and (A2) are sufficient for non-integrability of equation (1.5) in a certain meaning.
Theorem 2.1. Let $\Gamma $ be any domain in $\mathbb {C}/T^\ast \mathbb {Z}$ containing $\mathbb {R}/T^\ast \mathbb {Z}$ and $\gamma _\theta $ . Suppose that assumptions (A1) and (A2) hold for some $\theta =\theta _0\in \mathbb {T}^m$ . Then the system (1.5) is not meromorphically integrable in the Bogoyavlenskij sense near the resonant periodic orbit $(I,\theta )=(I^\ast ,\omega (I^\ast )\tau +\theta _0)$ with $\tau \in \Gamma $ such that the first integrals and commutative vector fields also depend meromorphically on $\varepsilon $ near $\varepsilon =0$ , when the domains of the independent and dependent variables are extended to regions in $\mathbb {C}$ and $\mathbb {C}^\ell \times (\mathbb {C}/2\pi \mathbb {Z})^m$ , respectively. Moreover, if assumption (A2) holds for any $\theta \in \Delta $ , where $\Delta $ is a dense set in $\mathbb {T}^m$ , then the conclusion holds for any resonant periodic orbit on the resonant torus $\mathscr {T}^\ast $ .
Our basic idea of the proof of Theorem 2.1 is similar to that of Morales-Ruiz [Reference Morales-Ruiz, Crespo and Hajto21], who studied time-periodic Hamiltonian perturbations of single-degree-of-freedom Hamiltonian systems and showed a relationship of their non-integrability with a version due to Ziglin [Reference Ziglin44] of the Melnikov method [Reference Melnikov18] when the small parameter $\varepsilon $ is regarded as a state variable. Here the Melnikov method enables us to detect transversal self-intersection of complex separatrices of periodic orbits unlike the standard version [Reference Guckenheimer and Holmes13, Reference Melnikov18, Reference Wiggins39]. More concretely, under some restrictive conditions, he essentially proved that they are meromorphically non-integrable when the small parameter is taken as one of the state variables if the Melnikov functions are not identically zero, based on a generalized version due to Ayoul and Zung [Reference Ayoul and Zung5] of the Morales–Ramis theory [Reference Morales-Ruiz20, Reference Morales-Ruiz and Ramis22]. We also use their generalized versions of the Morales–Ramis theory and its extension, the Morales–Ramis–Simó theory [Reference Morales-Ruiz, Ramis and Simó23], to prove Theorem 2.1. These generalized theories enable us to show the non-integrability of general differential equations in the Bogayavlenskij sense by using differential Galois groups [Reference Crespo and Hajto11, Reference van der Put and Singer37] of their variational or higher-order variational equations along non-constant particular solutions. We extend the idea of Morales-Ruiz [Reference Morales-Ruiz, Crespo and Hajto21] to higher-dimensional non-Hamiltonian systems near periodic orbits.
For the proof of Theorem 2.1, we first consider systems of the general form
where $f:\mathbb {C}^n\times \mathbb {C}\to \mathbb {C}^n$ is meromorphic, and describe direct consequences of the generalized versions due to Ayoul and Zung [Reference Ayoul and Zung5] of the Morales–Ramis theory [Reference Morales-Ruiz20, Reference Morales-Ruiz and Ramis22] when the parameter $\varepsilon $ is regarded as a state variable in equation (2.3) near $\varepsilon =0$ . Let $x=\bar {x}(t)$ be a periodic orbit in the unperturbed system
Taking $\varepsilon $ as another state variable, we extend equation (2.3) as
in which $(x,\varepsilon )=(\bar {x}(t),0)$ is a periodic orbit. The variational equation (VE) of equation (2.4) along the periodic solution $(\bar {x}(t),0)$ is given by
We regard equation (2.5) as a linear differential equation on a Riemann surface. Applying the version due to Ayoul and Zung [Reference Ayoul and Zung5] of the Morales–Ramis theory [Reference Morales-Ruiz20, Reference Morales-Ruiz and Ramis22] to equation (2.4), we obtain the following result.
Theorem 2.2. If the system (2.3) is meromorphically integrable in the Bogoyavlenskij sense near $x=\bar {x}(t)$ such that the first integrals and commutative vector fields also depend meromorphically on $\varepsilon $ near $\varepsilon =0$ , then the identity component of the differential Galois group of equation (2.5) is commutative.
See Appendix A for necessary information on the differential Galois theory.
We can obtain a more general result for equation (2.4) as follows. For simplicity, we assume that $n=1$ . The general case can be treated similarly. Letting
we express the Taylor series of $f(x;\varepsilon )$ about $(x,\varepsilon )=(\bar {x}(t),0)$ as
Let
Using these expressions, we write the kth-order VE of equation (2.4) along the periodic orbit $(x,\varepsilon )=(\bar {x}(t),0)$ as
where such terms as $(y^{(1)})^0,(\unicode{x3bb} ^{(1)})^0=1$ have been substituted and the summation in the last equation has been taken over all integers
such that
See [Reference Morales-Ruiz, Ramis and Simó23] for the details on derivation of higher-order VEs in a general setting. Substituting $y^{(j)}=0$ , $j=1,\ldots ,k-1$ , and $\unicode{x3bb} ^{(l)}=0$ , $l=2,\ldots ,k$ , into equation (2.6), we obtain
which is equivalent to
with $y=y^{(k)}$ and $\unicode{x3bb} =k!(\unicode{x3bb} ^{(1)})^k$ . Equation (2.7) is derived for $n>1$ similarly. We regard equation (2.7) as a linear differential equation on a Riemann surface, again. Such a reduction of higher-order VEs was used for planar systems in [Reference Acosta-Humánez, Lázaro, Morales-Ruiz and Pantazi1, Reference Acosta-Humánez and Yagasaki2]. We call equation (2.7) the kth-order reduced variational equation (RVE) of equation (2.4) around the periodic orbit $(x,\varepsilon )=(\bar {x}(t),0)$ . Using the version due to Ayoul and Zung [Reference Ayoul and Zung5] of the Morales–Ramis–Simó theory [Reference Morales-Ruiz, Ramis and Simó23], we obtain the following result.
Theorem 2.3. If the system (2.3) is meromorphically integrable in the Bogoyavlenskij sense near $x=\bar {x}(t)$ such that the first integrals and commutative vector fields also depend meromorphically on $\varepsilon $ near $\varepsilon =0$ , then the identity component of the differential Galois group of equation (2.7) is commutative.
Remark 2.4. The statement of Theorem 2.3 is very weak, compared with the original one of [Reference Morales-Ruiz, Ramis and Simó23], since the RVE (2.7) is much smaller than the full higher-order VE for equation (2.3). However, it is tractable and enough for our purpose.
We return to the system (1.5) and regard $\varepsilon $ as a state variable to rewrite it as
like equation (2.4). We extend the domain of the independent variable t to a region including $\mathbb {R}$ in $\mathbb {C}$ , as stated in Theorem 2.1. The $(k+1)$ th-order RVE of equation (2.8) along the periodic orbit $(I,\theta ,\varepsilon )=(I^\ast ,\omega (I^\ast )t+\theta _0,0)$ is given by
where
As a Riemann surface, we take any region $\Gamma $ in $\mathbb {C}/T^\ast \mathbb {Z}$ such that the closed loop $\gamma _\theta $ in assumption (A2), as well as $\mathbb {R}/T^\ast \mathbb {Z}$ , is contained in $\Gamma $ , as in Theorem 2.1 (see Figure 3). Let $\mathbb {K}_\theta \neq \mathbb {C}$ be a differential field that consists of $T^\ast $ -periodic functions and contains the elements of $h^k(I^\ast ,\omega (I^\ast )t+\theta )$ and $g^k(I^\ast ,\omega (I^\ast )t+\theta )$ with $t\in \Gamma $ . We regard the $(k+1)$ th-order RVE (2.9) as a linear differential equation over $\mathbb {K}_\theta $ on the Riemann surface $\Gamma $ . We obtain a fundamental matrix of equation (2.9) as
where $\mathrm{id}_\ell$ is the $\ell\times\ell$ identity matrix and
Let $\mathscr {G}_\theta $ be the differential Galois group of equation (2.9) and let $\sigma \in \mathscr {G}_\theta $ . Then
so that
where C is a constant $\ell $ -dimensional vector depending on $\sigma $ . If $\Xi ^k(t;\theta )\in \mathbb {K}_\theta $ , then $C=0$ for any $\sigma \in \mathscr {G}_\theta $ . Similarly, we have
where $C'$ is a constant $m\times \ell $ matrix depending on $\sigma $ . If $\mathrm {D}\omega (I^\ast )\neq 0$ , then $C'\neq 0$ for some $\sigma \in \mathscr {G}_\theta $ since $\mathrm {D}\omega (I^\ast )t\notin \mathbb {K}_\theta $ . However,
Hence,
where $C"$ is a constant m-dimensional vector depending on $\sigma $ . If $\Xi ^k(t;\theta ),\Psi ^k(t;\theta )\in \mathbb {K}_\theta $ , then $C"=0$ for any $\sigma \in \mathscr {G}_\theta $ . Thus, we see that
where
Proof of Theorem 2.1
Assume that the hypotheses of the theorem hold. We fix $\theta \in \mathbb {T}^m$ such that the integral (2.2) is not zero. We continue the fundamental matrix $\Phi ^k(t;\theta )$ analytically along the loop $\gamma =\gamma _\theta $ to obtain the monodromy matrix as
where
See Appendix B for basic information on monodromy matrices. In particular, we have $M_\gamma \in \mathscr {G}_\theta $ . Note that $\mathrm {D}\omega (I^\ast )\hat {C}_1\neq 0$ by assumption (A2).
Let $\bar {\gamma }=\{T^\ast s\mid s\in [0,1]\}$ , which is also a closed loop on the Riemann surface $\Gamma $ (see Figure 3). We continue $\Phi ^k(t;\theta )$ analytically along the loop $\bar {\gamma }$ to obtain the monodromy matrix as
Let $\bar {C}_1=\Xi ^k(T^\ast ;\theta )$ , $\bar {C}_2=\Psi ^k(T^\ast ;\theta )$ and $\bar {C}_3=\mathrm {D}\omega (I^\ast )T^\ast $ . We see that $M_{\bar {\gamma }}=M(\bar {C}_1,\bar {C}_2, \bar {C}_3)\in \mathscr {G}_\theta $ and $\bar {C}_3\hat {C}_1\neq 0$ by $\mathrm {D}\omega (I^\ast )\hat {C}_1\neq 0$ .
Lemma 2.5. Suppose that $M(C_1,C_2,C_3),M(C_1',C_2',C_3')\in \mathscr {G}_\theta $ for some $C_j,C_j'$ , $j=1,2,3$ , with $C_3C_1'\neq C_3'C_1$ . Then the identity component $\mathscr {G}_\theta ^0$ of $\mathscr {G}_\theta $ is not commutative.
Proof. Assume that the hypothesis holds. We easily see that $M(C_1,C_2,C_3)$ and $M(C_1',C_2',C_3')$ is not commutative since
while
However, we compute
and easily show by induction that
for any $k\in \mathbb {N}$ . Since $\mathscr {G}_\theta ^0$ is a subgroup of finite index in $\mathscr {G}_\theta $ (see Appendix A), we show that
if $C_3C_1+C_2\neq 0$ and
if $C_3C_1+C_2=0$ . Thus, we show that $\mathscr {G}_\theta ^0$ is not commutative in both cases.
By Lemma 2.5, the identity component $\mathscr {G}_\theta ^0$ is not commutative. Applying Theorem 2.3, we see that the system (1.5) is meromorphically non-integrable near the resonant periodic orbit $(I^\ast ,\omega (I^\ast )t+\theta )$ in the meaning of Theorem 2.1. If this statement holds for $\theta $ on a dense set $\Delta \subset \mathbb {T}^m$ , then it does so on $\mathbb {T}^m$ . Thus, we complete the proof.
Remark 2.6
-
(i) When the system (1.5) is Hamiltonian, it is not meromorphically Liouville-integrable such that the first integrals also depend meromorphically on $\varepsilon $ near $\varepsilon =0$ , if the hypotheses of Theorem 2.1 hold.
-
(ii) Assumption (A2) in Theorem 2.1 may be replaced with the following.
-
(A2′) For some $k\in \mathbb {Z}_{\ge 0}$ and $\theta \in \mathbb {T}^m$ ,
$$ \begin{align*} \mathrm{D}\omega(I^\ast)\Xi^k(t;\theta)\notin\mathbb{K}_\theta(t). \end{align*} $$
This is easily proven as follows. Let $\mathbb {L}$ be the Picard–Vessiot extension of equation (2.9) and let $\hat {\sigma }:\mathbb {L}\to \mathbb {L}$ be a $\mathbb {K}_\theta (t)$ -automorphism, that is, $\hat {\sigma }\in \mathrm {Gal}(\mathbb {L}/\mathbb {K}_\theta (t))\subset \mathscr {G}_\theta $ (see Appendix A). Since $\Xi ^k(t;\theta )\notin \mathbb {K}_\theta (t)$ , we have
$$ \begin{align*} \hat{\sigma}(\Xi^k(t;\theta))=\Xi^k(t;\theta)+\hat{C}_1 \end{align*} $$as in equation (2.10), so that $\hat {\sigma }$ corresponds to the matrix$$ \begin{align*} \begin{pmatrix} \mathrm{id}_\ell & 0 & \hat{C}_1\\ 0 & \mathrm{id}_m & \hat{C}_2\\ 0 & 0 & 1 \end{pmatrix}=M(\hat{C}_1,\hat{C}_2,0). \end{align*} $$Since $\mathrm {D}\omega (I^\ast )\hat {C}_1\neq 0$ for some $\hat {\sigma }\in \mathrm {Gal}(\mathbb {L}/\mathbb {K}_\theta (t))$ , we only have to use the above matrix instead of equation (2.11) and apply the same arguments to obtain the desired result. -
3 Planar case
We prove Theorem 1.1 for the planar case (1.1). We only consider a neighborhood of $(x,y)=(-\mu ,0)$ since we only have to replace x and $\mu $ with $-x$ and $1-\mu $ to obtain the result for a neighborhood of $(1-\mu ,0)$ . We introduce a small parameter $\varepsilon $ such that $0<\varepsilon \ll 1$ . Letting
and scaling the time variable $t\to \varepsilon ^3 t$ , we rewrite equation (1.1) as
or up to the order of $\varepsilon ^6$ ,
where the $O(\varepsilon ^8)$ terms have been eliminated. Equation (3.1) is a Hamiltonian system with the Hamiltonian
Non-integrability of a system which is similar to equation (3.1) but does not contain a small parameter was proven by using the Morales–Ramis theory [Reference Morales-Ruiz20, Reference Morales-Ruiz and Ramis22] in [Reference Morales-Ruiz, Simó and Simon24]. See also Remark 3.1(ii).
We next rewrite equation (3.2) in the polar coordinates. Let
The momenta $(p_r,p_\phi )$ corresponding to $(r,\phi )$ satisfy
See, e.g., [Reference Meyer and Offin19, §8.6.1]. The Hamiltonian becomes
Up to $O(1)$ , the corresponding Hamiltonian system becomes
which is easily solved since $p_\phi $ is a constant. Let $u=1/r$ . From equation (3.3), we have
from which we obtain the relation
where the position $\phi =0$ is appropriately chosen and e is a constant. We choose $e\in (0,1)$ , so that equation (3.4) represents an elliptic orbit with the eccentricity e. Moreover, its period is given by
Now we introduce the Delaunay elements obtained from the generating function
where
with
(see, e.g., [Reference Meyer and Offin19, §8.9.1]). We have
where
Since the transformation from $(r,\phi ,p_r,p_\phi )$ to $(\theta _1,\theta _2,I_1,I_2)$ is symplectic, the transformed system is also Hamiltonian and its Hamiltonian is given by
where $r=R(\theta _1,I_1,I_2)$ is the r-component of the symplectic transformation satisfying
Thus, we obtain the Hamiltonian system
Similarly to the treatment for equation (1.1) stated just above Theorem 1.1, the new variables $(v_1,v_2,v_3)\in \mathbb {C}\times (\mathbb {C}/2\pi \mathbb {Z})^2$ given by
are introduced, so that the generating function (3.6) is regarded as an analytic one on the four-dimensional complex manifold
since equation (3.7) is represented by
Hence, we can regard equation (3.9) as a meromorphic two-degree-of-freedom Hamiltonian system on the four-dimensional complex manifold
like equation (1.3) on $\mathscr {S}_2$ for equation (1.1). Actually, we have
to express
as meromorophic functions of $(r,I_1,I_2,v_1,v_2,v_3)$ on $\bar {\mathscr {S}}_2$ . In particular, the Hamiltonian system has an additional first integral that is meromorphic in $(I_1,I_2, \theta _1,\theta _2, v_1,v_2,v_3,\varepsilon )$ on $\hat {\mathscr {S}}_2\setminus \Sigma (\hat {\mathscr {S}}_2)$ near $\varepsilon =0$ if the system (1.1) has an additional first integral that is meromorphic in $(x,y,p_x,p_y,u_1,u_2)$ on $\mathscr {S}_2\setminus \Sigma (\mathscr {S}_2)$ near $(x,y)=(-\mu ,0)$ , as in [Reference Combot10, Theorem 2], since the corresponding Hamiltonian system has the same expression as equation (3.9) on $\hat {\mathscr {S}}_2\setminus \Sigma (\hat {\mathscr {S}}_2)$ , where $\Sigma (\hat {\mathscr {S}}_2)$ is the critical set of $\hat {\mathscr {S}}_2$ on which the projection $\hat {\pi }_2:\hat {\mathscr {S}}_2\to \mathbb {C}^2\times (\mathbb {C}/2\pi \mathbb {Z})^2$ given by
is singular.
We next estimate the $O(\varepsilon ^6)$ -term in the first equation of equation (3.9) for the unperturbed solutions. When $\varepsilon =0$ , we see that $I_1,I_2,\theta _2$ are constants and can write $\theta _1=\omega _1 t+\theta _{10}$ for any solution to equation (3.9), where
and $\theta _{10}\in \mathbb {S}^1$ is a constant. Since $r=R(\omega _1 t+\theta _{10},I_1,I_2)$ and
respectively become the r- and $\phi $ -components of a solution to equation (3.3), we have
by equation (3.4), where $\phi (t)$ is the $\phi $ -component of a solution to equation (3.3) and $\bar {\phi }(\theta _{10})$ is a constant depending on $\theta _{10}$ . Differentiating both equations in equation (3.11) with respect to t yields
Using equations (3.11) and (3.12), we can obtain the necessary expression of the $O(\varepsilon ^6)$ -term.
We are ready to check the hypotheses of Theorem 2.1 for the system (3.9). Assumption (A1) holds for any $I_1>0$ . Fix the values of $I_1,I_2$ at some $I_1^\ast ,I_2^\ast>0$ , and let $\omega ^\ast =\omega _1/3$ . Since by the second equation of equation (3.11) $\phi (t)$ is $2\pi /\omega _1$ -periodic, we have
by equations (3.5) and (3.10), so that
From equation (3.10), we also have
where $I^\ast {\kern-1.2pt}={\kern-1.2pt}(I_1^\ast ,{\kern-1pt}I_2^\ast )$ . We write the first component of equation (2.2) with $k{\kern-1.2pt}={\kern-1.2pt}5$ for $I{\kern-1.2pt}={\kern-1.2pt}I^\ast $ as
where the closed loop $\gamma _\theta $ is specified below. Using equations (3.11) and (3.12), we compute
By equations (3.3) and (3.4), we have
Using integration by substitution and the relation (3.14), we rewrite the above integral as
where the path of integration might change but the same notation $\gamma _\theta $ has still been used for it.
Here we integrate equation (3.14) to obtain
which is rewritten as
when $\phi (0)=0$ or $\lim _{t\to 0}\phi (t)=0$ . From equation (3.16), we see that as $\operatorname {\mathrm {Im}}\phi \to +\infty $ , $\omega _1 t\to iK_1$ , where
See Figure 4. So the integrand in equation (3.15) is singular at $t=iK_1$ . Let $K_2=\operatorname {\mathrm {arccosh}}(1/e)$ . Then $1+e\cos \phi =0$ at $\phi =\pi +iK_2$ , and by equation (3.17),
near $\phi =\pi +iK_2$ , where $\Delta \phi =\phi -(\pi +iK_2)$ . Moreover, near $\phi =\pi +iK_2$ ,
We take a closed path starting and ending at $t=\tfrac {1}{3}T^\ast $ and passing through $t=\tfrac {2}{3}T^\ast $ , $\tfrac {2}{3}T^\ast +i(K_1\mp \delta )$ , $\tfrac {2}{3}T^\ast +iM$ , $\tfrac {1}{3}T^\ast +iM$ , and $\tfrac {1}{3}T^\ast +i(K_1\pm \delta )$ as $\gamma _\theta $ in $\mathbb {C}/T^\ast \mathbb {Z}$ , where $\delta $ and M are respectively sufficiently small and large positive constants (see Figure 5). Here $\gamma _\theta $ passes along the left circular arc centered at $\tfrac {2}{3}T^\ast +iK_1$ (respectively at $\tfrac {1}{3}T^\ast +iK_1$ ) with radius $\delta $ between $\tfrac {2}{3}T^\ast +i(K_1-\delta )$ and $\tfrac {2}{3}T^\ast +i(K_1+\delta )$ (respectively between $\tfrac {1}{3}T^\ast +i(K_1+\delta )$ and $\tfrac {1}{3}T^\ast +i(K_1-\delta )$ ). We compute
while
Moreover, the integral on $[\tfrac {1}{3}T^\ast ,\tfrac {2}{3}T^\ast ]$ in equation (3.15) is $O(1)$ , and the integrals from $\tfrac {2}{3}T^\ast $ to $\tfrac {2}{3}T^\ast +iM$ and from $\tfrac {1}{3}T^\ast +iM$ to $\tfrac {1}{3}T^\ast $ cancel since the integrand is $\tfrac {1}{3}T^\ast $ -periodic. Thus, we see that the integral (3.15) is not zero for $M>0$ sufficiently large, so that assumption (A2) holds.
Finally, we apply Theorem 2.1 to show that the meromorphic Hamiltonian system corresponding to equation (3.9) is not meromorphically integrable such that the first integral depends meromorphically on $\varepsilon $ near $\varepsilon =0$ even if any higher-order terms are included. Thus, we obtain the conclusion of Theorem 1.1 for the planar case.
Remark 3.1
-
(i) The reader may think that a small circle centered at $t=\tfrac {1}{3}T^\ast +iK_1$ or $\tfrac {2}{3}T^\ast +iK_1$ can be taken as $\gamma _\theta $ in the proof, since the integrand in equation (3.15) is singular there. However, the integral (3.15) for the path is estimated to be zero (cf. [Reference Yagasaki42, §3]).
-
(ii) The different change of coordinates
$$ \begin{align*} \varepsilon\xi=x+\mu,\quad \varepsilon\eta=y,\quad p_\xi=p_x,\quad p_\eta=p_y+\mu \end{align*} $$in equation (1.1) yields(3.18) $$ \begin{equation} \begin{aligned} & \dot{\xi}=p_\xi+\varepsilon\eta,\quad \dot{p}_\xi=\varepsilon p_\eta-\varepsilon^{-1}\frac{(1-\mu)\xi}{(\xi^2+\eta^2)^{3/2}} +2\varepsilon^2\mu\xi, \\[4pt] & \dot{\eta}=p_\eta-\varepsilon\xi,\quad \dot{p}_\eta=-\varepsilon p_\xi-\varepsilon^{-1}\frac{(1-\mu)\eta}{(\xi^2+\eta^2)^{3/2}} -\varepsilon^2\mu\eta \end{aligned}\end{equation} $$up to $O(\varepsilon ^2)$ after the time scaling $t\to t/\varepsilon $ . As in [Reference Morales-Ruiz, Simó and Simon24], we use the Levi–Civita regularization$$ \begin{align*} \begin{pmatrix} \xi\\ \eta \end{pmatrix} = \begin{pmatrix} q_1 & -q_2\\ q_2 & q_1 \end{pmatrix} \begin{pmatrix} q_1\\ q_2 \end{pmatrix}\!,\quad \begin{pmatrix} p_\xi\\ p_\eta \end{pmatrix} =\frac{2}{q_1^2+q_2^2} \begin{pmatrix} q_1 & -q_2\\ q_2 & q_1 \end{pmatrix} \begin{pmatrix} p_1\\ p_2 \end{pmatrix}\!, \end{align*} $$(see, e.g., [Reference Simó and Stuchi31] or [Reference Meyer and Offin19, §8.8.1]) to obtain$$ \begin{align*} H+C_0 &= \frac{4}{q_1^2+q_2^2}\bigg(\frac{1}{4}C_0(q_1^2+q_2^2)+\frac{1}{2}(p_1^2+p_2^2) +\frac{1}{2}\varepsilon(q_1^2+q_2^2)(q_2p_1-q_1p_2)\\[4pt] &\quad -\frac{1}{2}\varepsilon^2\mu(q_1^2+q_2^2)(q_1^4q_1^2q_2^2-4+q_2^4)) -\frac{1}{4}\varepsilon^{-1}(1-\mu)\bigg), \end{align*} $$which yields$$ \begin{align*} H+C_0&= \frac{4}{q_1^2+q_2^2}\bigg(\frac{1}{4}C_0(q_1^2+q_2^2)+\frac{1}{2}(p_1^2+p_2^2) +\frac{1}{2}(q_1^2+q_2^2)(q_2p_1-q_1p_2)\\[4pt] &\quad -\frac{1}{2}\mu(q_1^2+q_2^2)(q_1^4q_1^2q_2^2-4+q_2^4)) -\frac{1}{4}(1-\mu)\bigg) \end{align*} $$after the scaling $(q,p)\to (q,p)/\varepsilon ^{3/2}$ . Using the approach of [Reference Morales-Ruiz, Simó and Simon24], we can show that the Hamiltonian system with the Hamiltonian$$ \begin{align*} \tilde{H}&=\tfrac{1}{4}C_0(q_1^2+q_2^2)+\tfrac{1}{2}(p_1^2+p_2^2) +\tfrac{1}{2}(q_1^2+q_2^2)(q_2p_1-q_1p_2)\\[4pt] &\quad -\tfrac{1}{2}\mu(q_1^2+q_2^2)(q_1^4q_1^2q_2^2-4+q_2^4) \end{align*} $$is meromorphically non-integrable. This implies that the Hamiltonian system (3.18) is also meromorphically non-integrable for $\varepsilon>0$ fixed.
4 Spatial case
We prove Theorem 1.1 for the spatial case (1.2). As in the planar case, we only consider a neighborhood of $(x,y,z)=(-\mu ,0,0)$ and introduce a small parameter $\varepsilon $ such that $0<\varepsilon \ll 1$ . Letting
and scaling the time variable $t\to \varepsilon ^3 t$ , we rewrite equation (1.2) as
or up to the order of $\varepsilon ^6$ ,
like equation (3.1), where the $O(\varepsilon ^8)$ terms have been eliminated. Equation (4.1) is a Hamiltonian system with the Hamiltonian
We next rewrite equation (4.2) in the spherical coordinates (see Figure 6). Let
The momenta $(p_r,p_\phi ,p_\psi )$ corresponding to $(r,\phi ,\psi )$ satisfy
(see, e.g., [Reference Meyer and Offin19, §8.7]). The Hamiltonian becomes
Up to $O(1)$ , the corresponding Hamiltonian system becomes
We have the relation (3.4) for periodic orbits on the $(\xi ,\eta )$ -plane since equation (4.3) reduces to equation (3.3) when $\psi =\tfrac {1}{2}\pi $ and $p_\psi =0$ .
As in the planar case, we introduce the Delaunay elements obtained from the generating function
where
with $\psi _0=\arcsin (I_3/I_2)$ . See, e.g., [Reference Meyer and Offin19, §8.9.3], although a slightly modified generating function is used here. We have
where
Since the transformation from $(r,\phi ,\psi ,p_r,p_\phi ,p_\psi )$ to $(\theta _1,\theta _2,\theta _3,I_1,I_2,I_3)$ is symplectic, the transformed system is also Hamiltonian and its Hamiltonian is given by
where $r=R(\theta _1,I_1,I_2)$ and $\psi =\Psi (\theta _1,\theta _2,I_1,I_2,I_3)$ are the r- and $\psi $ -components of the symplectic transformation satisfying equation (3.8) and
respectively. Thus, we obtain the Hamiltonian system as
where
As in the planar case, the new variables $w_1,w_2\in (\mathbb {C}/2\pi )$ given by
are introduced, so that the generating function (4.4) is regarded as an analytic one on the six-dimensional complex manifold
since equation (4.5) is represented by
Moreover, we can regard equation (4.7) as a meromorphic three-degree-of-freedom Hamiltonian systems on the six-dimensional complex manifold
like equation (1.4) on $\mathscr {S}_3$ for equation (1.2). Actually, we have
to express
as meromorophic functions of $(\psi ,I_2,I_3,w_1,w_2)$ on $\bar {\mathscr {S}}_3$ . In particular, the Hamiltonian system has two additional meromorphic integrals that are meromorphic in $(I_1,I_2,I_3,\theta _1,\theta _2,\theta _3,r,v_1,v_2,v_3,w_1,w_ 2,\varepsilon )$ on $\hat {\mathscr {S}}_3\setminus \Sigma (\hat {\mathscr {S}}_3)$ near $\varepsilon =0$ , if the system (1.2) has two additional meromorphic integrals that are meromorphic in $(x,y,z,p_x,p_y,p_z,u_1,u_2)$ on $\mathscr {S}_3\setminus \Sigma (\mathscr {S}_3)$ near $(x,y,z)=(-\mu ,0,0)$ , as in the planar case. Here $\Sigma (\hat {\mathscr {S}}_3)$ is the critical set of $\hat {\mathscr {S}}_3$ on which the projection ${\hat {\pi }_3:\hat {\mathscr {S}}_3\to \mathbb {C}^3\times (\mathbb {C}/2\pi \mathbb {Z})^3}$ given by
is singular.
We next estimate the function $\hat {h}_1(I,\theta )$ for solutions to equation (4.7) with $\varepsilon =0$ on the plane of $\psi =\tfrac {1}{2}\pi $ . When $\varepsilon =0$ , we see that $I_1,I_2,I_3,\theta _2,\theta _3$ are constants and can write $\theta _1=\omega _1 t+\theta _{10}$ for any solution to equation (4.7) with equation (3.10), where $\theta _{10}\in \mathbb {S}^1$ is a constant. Note that if $\psi =\tfrac {1}{2}\pi $ and $p_\psi =0$ , then $I_2=I_3$ by equation (4.6). Since $r=R(\omega _1 t+\theta _{10},I_1,I_2)$ and
respectively become the r- and $\phi $ -components of a solution to equation (4.3) with $\psi =\tfrac {1}{2}\pi $ and $p_\psi =0$ , we have the first equation of equation (3.11) with
where $\phi (t)$ is the $\phi $ -component of a solution to equation (3.3) and $\bar {\phi }(\theta _1)$ is a constant depending only on $\theta _1$ as in the planar case. Differentiating equation (4.8) with respect to t yields
Using equations (3.11), (3.12), (4.8), and (4.9), we can obtain the necessary expression of $\hat {h}_1(I,\theta )$ .
We are ready to check the hypotheses of Theorem 2.1 for the system (4.7). Assumption (A1) holds for any $I_1>0$ . Fix the value of $I_1$ at some $I_1^\ast>0$ , and let $\omega ^\ast =\omega _1/3$ . By the first equation of equation (4.8), $\phi (t)$ is $2\pi /\omega _1$ -periodic, so that by equations (3.5) and (3.10),
From equation (3.10), we have
where $I^\ast =(I_1^\ast ,I_2^\ast ,I_2^\ast )$ . Using the first equations of equations (3.11) and (3.12), equations (4.8) and (4.9), we compute the first component of equation (2.2) with $k=5$ for $I=I^\ast $ as
which has the same expression as equation (3.13) with $\theta _2=\theta _3$ . Repeating the arguments given in §3, we can show that assumption (A2) holds as in the planar case. Finally, we apply Theorem 2.1 to show that the meromorphic Hamiltonian system corresponding to equation (4.7) is not meromorphically integrable such that the first integrals depend meromorphically on $\varepsilon $ near $\varepsilon =0$ . Thus, we complete the proof of Theorem 1.1 for the spatial case.
Acknowledgements
The author thanks Mitsuru Shibayama, Shoya Motonaga and Taiga Kurokawa for helpful discussions, and David Blázquez-Sanz for his useful comments. This work was partially supported by the JSPS KAKENHI Grant Number JP17H02859.
A Appendix. Differential Galois theory
In this appendix, we give necessary information on differential Galois theory for linear differential equations, which is often referred to as the Picard–Vessiot theory. See the textbooks [Reference Crespo and Hajto11, Reference van der Put and Singer37] for more details on the theory.
Consider a linear system of differential equations
where $\mathbb {K}$ is a differential field and $\mathrm {gl}(n,\mathbb {K})$ denotes the ring of $n\times n$ matrices with entries in $\mathbb {K}$ . Here a differential field is a field endowed with a derivation $\partial $ , which is an additive endomorphism satisfying the Leibniz rule. The set $\mathrm {C}_{\mathbb {K}}$ of elements of $\mathbb {K}$ for which $\partial $ vanishes is a subfield of $\mathbb {K}$ and called the field of constants of $\mathbb {K}$ . In our application of the theory in this paper, the differential field $\mathbb {K}$ is the field of meromorphic functions on a Riemann surface, so that the field of constants is $\mathbb {C}$ .
A differential field extension $\mathbb {L}\supset \mathbb {K}$ is a field extension such that $\mathbb {L}$ is also a differential field and the derivations on $\mathbb {L}$ and $\mathbb {K}$ coincide on $\mathbb {K}$ . A differential field extension $\mathbb {L}\supset \mathbb {K}$ satisfying the following two conditions is called a Picard–Vessiot extension for equation (A.1):
-
(PV1) the field $\mathbb {L}$ is generated by $\mathbb {K}$ and elements of a fundamental matrix of equation (A.1);
-
(PV2) the fields of constants for $\mathbb {L}$ and $\mathbb {K}$ coincide.
The system (A.1) admits a Picard–Vessiot extension which is unique up to isomorphism.
We now fix a Picard–Vessiot extension $\mathbb {L}\supset \mathbb {K}$ and fundamental matrix $\Phi $ with entries in $\mathbb {L}$ for equation (A.1). Let $\sigma $ be a $\mathbb {K}$ -automorphism of $\mathbb {L}$ , which is a field automorphism of $\mathbb {L}$ that commutes with the derivation of $\mathbb {L}$ and leaves $\mathbb {K}$ pointwise fixed. Obviously, $\sigma (\Phi )$ is also a fundamental matrix of equation (A.1) and consequently there is a matrix $M_\sigma $ with constant entries such that $\sigma (\Phi )=\Phi M_\sigma $ . This relation gives a faithful representation of the group of $\mathbb {K}$ -automorphisms of $\mathbb {L}$ on the general linear group as
where $\mathrm {GL}(n,\mathrm {C}_{\mathbb {L}})$ is the group of $n\times n$ invertible matrices with entries in $\mathrm {C}_{\mathbb {L}}$ . The image of R is a linear algebraic subgroup of $\mathrm {GL}(n,\mathrm {C}_{\mathbb {L}})$ , which is called the differential Galois group of equation (A.1) and often denoted by $\mathrm {Gal}(\mathbb {L}/\mathbb {K})$ . This representation is not unique and depends on the choice of the fundamental matrix $\Phi $ , but a different fundamental matrix only gives rise to a conjugated representation. Thus, the differential Galois group is unique up to conjugation as an algebraic subgroup of the general linear group.
Let $G\subset \mathrm {GL}(n,\mathrm {C}_{\mathbb {L}})$ be an algebraic group. Then it contains a unique maximal connected algebraic subgroup $G^0$ , which is called the connected component of the identity or identity component. The identity component $G^0\subset G$ is the smallest subgroup of finite index, that is, the quotient group $G/G^0$ is finite.
B Appendix. Monodromy matrices
In this appendix, we give general information on monodromy matrices for the reader’s convenience.
Let $\mathbb {K}$ be the field of meromorphic functions on a Riemann surface $\Gamma $ , and consider the linear system (A.1). Let $t_0\in \Gamma $ be a non-singular point for equation (A.1). We prolong the fundamental matrix $\Phi (t)$ analytically along any loop $\gamma $ based at $t_0$ and containing no singular point, and obtain another fundamental matrix $\gamma *\Phi (t)$ . So there exists a constant non-singular matrix $M_{[\gamma ]}$ such that
The matrix $M_{[\gamma ]}$ depends on the homotopy class $[\gamma ]$ of the loop $\gamma $ and is called the monodromy matrix of $[\gamma ]$ .
Let $\mathbb {L}$ be a Picard–Vessiot extension of equation (A.1) and let $\mathrm {Gal}(\mathbb {L}/\mathbb {K})$ be the differential Galois group, as in Appendix A. Since analytic continuation commutes with differentiation, we have $M_{[\gamma ]}\in \mathrm {Gal}(\mathbb {L}/\mathbb {K})$ .