Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:21:45.840Z Has data issue: false hasContentIssue false

On critical point for two-dimensional holomorphic systems

Published online by Cambridge University Press:  12 May 2016

FRANCISCO VALENZUELA-HENRÍQUEZ*
Affiliation:
Instituto de Matemática, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile email francisco.valenzuela@pucv.cl, pancho.valenzuela.math@gmail.com

Abstract

Let $f:M\rightarrow M$ be a biholomorphism on a two-dimensional complex manifold, and let $X\subseteq M$ be a compact $f$-invariant set such that $f|_{X}$ is asymptotically dissipative and without periodic sinks. We introduce a solely dynamical obstruction to dominated splitting, namely critical point. Critical point is a dynamical object and captures many of the dynamical properties of a one-dimensional critical point.

Type
Research Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedford, E., Lyubich, M. and Smillie, J.. Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents. Invent. Math. 112(1) (1993), 77125.Google Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity. Invent. Math. 103(1) (1991), 6999.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of C 2 . II. Stable manifolds and recurrence. J. Amer. Math. Soc. 4(4) (1991), 657679.Google Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ℂ2 . III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294(3) (1992), 395420.CrossRefGoogle Scholar
Bochi, J.. The Multiplicative ergodic theorem of Oseledets http://www.mat.uc.cl/ jairo.bochi/docs/oseledets.pdf.Google Scholar
Bonatti, C., Díaz, L. and Viana, M.. Dynamics beyond uniform hyperbolicity. A Global Geometric and Probabilistic Perspective (Encyclopaedia of Mathematical Sciences, 102) . Springer, Berlin, 2005, Mathematical Physics, III.Google Scholar
Conway, J.. Functions of One Complex Variable (Graduate Texts in Mathematics, 11) , 2nd edn. Springer, New York, 1978.Google Scholar
Crovisier, S.. Sur la notion de Criticalité de Pujals–Rodriguez Hertz. Preprint.Google Scholar
Dujardin, R. and Lyubich, M. Stability and bifurcations for dissipative polynomial automorphisms of ℂ2 . Invent. Math. 200 (2015), 439511.Google Scholar
Friedland, S. and Milnor, J.. Dynamical properties of plane polynomial automorphisms. Ergod. Th. & Dynam. Sys. 9(1) (1989), 6799.Google Scholar
Hakim, M.. Attracting domains for semi-attractive transformations of ℂ p . Publicacions Matemàtiques 38 (1994), 479499.CrossRefGoogle Scholar
Hubbard, J. H.. The Hénon mapping in the complex domain. Chaotic Dynamics and Fractals (Atlanta, GA, 1985) (Notes Reports on Mathematical Science and Engineering, 2) . Academic Press, Orlando, FL, 1986, pp. 101111.Google Scholar
Hubbard, J. and Oberste-Vorth, R.. Hénon mappings in the complex domain. I. The global topology of dynamical space. Publ. Math. Inst. Hautes Études Sci. 79 (1994), 546.CrossRefGoogle Scholar
Hubbard, J. H. and Oberste-Vorth, R. W.. Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials. Real and Complex Dynamical Systems (Hillerød, 1993) (NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 464) . Kluwer Academic Publications, Dordrecht, 1995, pp. 89132.CrossRefGoogle Scholar
Husemoller, D.. Fibre Bundles (Graduate Texts in Mathematics, 20) 3rd edn. Springer, New York, 1994.CrossRefGoogle Scholar
Lehto, O. and Virtanen, K. I.. Quasiconformal mappings in the plane (Grundlehren der mathematischen Wissenschaften, 126) , 2nd edn. Springer, New York, 1973.Google Scholar
Mañé, R.. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm. Math. Phys. 100(4) (1985), 495524.CrossRefGoogle Scholar
Milnor, J.. Dynamics in One Complex Variable (Annals of Mathematics Studies, 160) , 3rd edn. Princeton University Press, Princeton, NJ, 2006.Google Scholar
Newhouse, S.. Cone-fields, domination, and hyperbolicity. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 419432.Google Scholar
Pujals, E. R. and Rodriguez Hertz, F.. Critical points for surface diffeomorphisms. J. Mod. Dyn. 1(4) (2007), 615648.Google Scholar
Pujals, E. R. and Sambarino, M.. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. of Math. (2) 151 (2000), 9611023.Google Scholar
Valenzuela-Henriquez, F.. Equivalent conditions for hyperbolicity on partially hyperbolic holomorphic map. Indiana Univ. Math. J. 60 (2011), 13631392.Google Scholar