Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:10:08.676Z Has data issue: false hasContentIssue false

On quasi-compact Markov nets

Published online by Cambridge University Press:  20 July 2010

WOJCIECH BARTOSZEK
Affiliation:
Department of Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland (email: bartowk@mifgate.mif.pg.gda.pl)
NAZIFE ERKURŞUN
Affiliation:
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey (email: erkursun@metu.edu.tr)

Abstract

We extend a theorem of Lotz, which says that any Markov operator T acting on C(X) such that T* is mean ergodic and all invariant measures have non-meager supports must be quasi-compact, to Lotz–Räbiger nets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bartoszek, W.. On a theorem of H. P. Lotz on quasi-compactness of Markov operators. Colloq. Math. 52(2) (1987), 281284.CrossRefGoogle Scholar
[2]Bartoszek, W.. On quasi-compactness and invariant measures of Markov operators on C(X). Bull. Acad. Polon. Sci. 34 (1986), 6972.Google Scholar
[3]Bartoszek, W.. Asymptotic periodicity of the iterates of positive contractions on Banach lattices. Studia Math. XCI (1988), 759–188.Google Scholar
[4]Bessaga, C. and Pełczyński, A.. Selected Topics in Infinite-Dimensional Topology (Mathematical Monographs, 58). PWN, Warsaw, 1975.Google Scholar
[5]Eberlein, W. F.. Abstract ergodic theorems and weakly almost periodic functions. Trans. Amer. Math. Soc. 67 (1949), 217240.CrossRefGoogle Scholar
[6]Emel’yanov, E. Yu.. Lotz–Räbiger nets. Conference Materials, Bilkent–METU Joint Analysis Seminar, 2008.Google Scholar
[7]Emel’yanov, E. Yu.. Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups (Operator Theory: Advances and Applications, 173). Birkhäuser, Basel, 2007.Google Scholar
[8]Emel’yanov, E. Yu. and Erkursun, N.. Generalization of Eberlein’s and Sine’s ergodic theorems to (ℒ,ℛ)-nets. Vladikavkaz. Mat. Zh. 9(3) (2007), 2226.Google Scholar
[9]Engelking, R.. General Topology. Heldermann, Berlin, 1985.Google Scholar
[10]Furstenberg, H.. Strict ergodicity and transformations of the torus. Amer. J. Math. 83 (1961), 573601.CrossRefGoogle Scholar
[11]Iwanik, A.. On pointwise convergence of Cesàro means and separation properties for Markov operators on C(X). Bull. Acad. Polon. Sci. 29(9–10) (1981), 515520.Google Scholar
[12]Iwanik, A.. Unique ergodicity of irreducible Markov operators on C(X). Studia Math. 77(1) (1983), 8186.CrossRefGoogle Scholar
[13]Iwanik, A.. Non-uniquely ergodic minimal systems. Bull. Acad. Polon. Sci. 32(7–8) (1984), 471478.Google Scholar
[14]Krengel, U.. Ergodic Theorems. De Gruyter, Berlin, 1985.CrossRefGoogle Scholar
[15]Lin, M.. On the uniform ergodic theorem. Proc. Amer. Math. Soc. 43 (1974), 334340.CrossRefGoogle Scholar
[16]Lin, M.. Quasi-compactness and uniform ergodicity of Markov operators. Ann. Inst. H. Poincaré Sect. B 11 (1975), 345354.Google Scholar
[17]Lin, M.. Quasi-compactness and uniform ergodicity of positive operators. Israel J. Math. 29 (1978), 309311.CrossRefGoogle Scholar
[18]Lotz, H. P.. Uniform ergodic theorems for Markov operators on C(X). Math. Z. 178 (1981), 145156.CrossRefGoogle Scholar
[19]Lotz, H. P.. Tauberian theorems for operators on Banach spaces. Semesterbericht Funktionalanalysis, WS 1983/1984, Mathematics Institute, Eberhard-Karls-Universität Tübingen, 1984, pp. 1–15.Google Scholar
[20]Lotz, H. P.. Tauberian theorems for operators on L and similar spaces. Functional Analysis: Surveys and Recent Results. Eds. Biersted, K.-D. and Fuchssteiner, B.. North-Holland, Amsterdam, 1984, pp. 117133.Google Scholar
[21]Oxtoby, J.. Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116136.CrossRefGoogle Scholar
[22]Räbiger, F.. Stability and ergodicity of dominated semigroups. Math. Ann. 297 (1993), 103116.CrossRefGoogle Scholar
[23]Raimi, R. A.. Minimal sets and ergodic measures in βℕ∖ℕ. Bull. Amer. Math. Soc. 70 (1964), 711712.CrossRefGoogle Scholar
[24]Romanelli, S.. Ergodic subspaces related to operator semigroups. Bull. Acad. Polon. Sci. 38(3–4) (1991), 191198.Google Scholar
[25]Sine, R.. Constricted systems. Rocky Mountain J. Math. 21 (1991), 13731383.CrossRefGoogle Scholar
[26]Sine, R.. Geometric theory of a single Markov operator. Pacific J. Math. 27 (1968), 155166.CrossRefGoogle Scholar
[27]Yosida, K. and Kakutani, S.. Operator-theoretical treatment of Markov process and mean ergodic theorem. Ann. of Math. (2) 42(2) (1941), 188228.CrossRefGoogle Scholar