Published online by Cambridge University Press: 08 November 2016
In reversible dynamical systems, it is of great importance to understand symmetric features. The aim of this paper is to explore symmetric periodic points of reversible maps on planar domains invariant under a reflection. We extend Franks’ theorem on a dichotomy of the number of periodic points of area-preserving maps on the annulus to symmetric periodic points of area-preserving reversible maps. Interestingly, even a non-symmetric periodic point guarantees infinitely many symmetric periodic points. We prove an analogous statement for symmetric odd-periodic points of area-preserving reversible maps isotopic to the identity, which can be applied to dynamical systems with double symmetries. Our approach is simple, elementary, and far from Franks’ proof. We also show that a reversible map has a symmetric fixed point if and only if it is a twist map which generalizes a boundary twist condition on the closed annulus in the sense of Poincaré–Birkhoff. Applications to symmetric periodic orbits in reversible dynamical systems with two degrees of freedom are briefly discussed.