Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T12:09:10.620Z Has data issue: false hasContentIssue false

On the dimension of points which escape to infinity at given rate under exponential iteration

Published online by Cambridge University Press:  29 March 2021

KRZYSZTOF BARAŃSKI
Affiliation:
Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097Warszawa, Poland (e-mail: baranski@mimuw.edu.pl)
BOGUSŁAWA KARPIŃSKA*
Affiliation:
Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-661Warszawa, Poland

Abstract

We prove a number of results concerning the Hausdorff and packing dimension of sets of points which escape (at least in average) to infinity at a given rate under non-autonomous iteration of exponential maps. In particular, we generalize the results proved by Sixsmith in 2016 and answer his question on annular itineraries for exponential maps.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, J. M. and Oversteegen, L. G.. The geometry of Julia sets. Trans. Amer. Math. Soc. 338(2) (1993), 897918.CrossRefGoogle Scholar
Barański, K.. Trees and hairs for some hyperbolic entire maps of finite order. Math. Z. 257(1) (2007), 3359.CrossRefGoogle Scholar
Barański, K., Karpińska, B. and Zdunik, A.. Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts. Int. Math. Res. Not. IMRN 2009(4) (2009), 615624.Google Scholar
Bergweiler, W. and Hinkkanen, A.. On semiconjugation of entire functions. Math. Proc. Cambridge Philos. Soc. 126(3) (1999), 565574.CrossRefGoogle Scholar
Bergweiler, W., Karpińska, B. and Stallard, G. M.. The growth rate of an entire function and the Hausdorff dimension of its Julia set. J. Lond. Math. Soc. (2) 80(3) (2009), 680698.CrossRefGoogle Scholar
Bergweiler, W. and Peter, J.. Escape rate and Hausdorff measure for entire functions. Math. Z. 274(1–2) (2013), 551572.CrossRefGoogle Scholar
Devaney, R. L. and Krych, M.. Dynamics of $\exp (z)$ . Ergod. Th. & Dynam. Sys. 4(1) (1984), 3552.CrossRefGoogle Scholar
Devaney, R. L. and Tangerman, F.. Dynamics of entire functions near the essential singularity. Ergod. Th. & Dynam. Sys. 6(4) (1986), 489503.CrossRefGoogle Scholar
Erëmenko, A. È. and Lyubich, M. Y.. Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42(4) (1992), 9891020.CrossRefGoogle Scholar
Eremenko, A.. On the iteration of entire functions. Dynamical Systems and Ergodic Theory (Warsaw, 1986) (Banach Center Publications, 23). PWN, Warsaw, 1989, pp. 339345.Google Scholar
Falconer, K.. Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. John Wiley & Sons, Inc., Hoboken, NJ, 2003.CrossRefGoogle Scholar
Karpińska, B.. Area and Hausdorff dimension of the set of accessible points of the Julia sets of and . Fund. Math. 159(3) (1999), 269287.CrossRefGoogle Scholar
Karpińska, B.. Hausdorff dimension of the hairs without endpoints for $\lambda\ \exp\ z$ . C. R. Math. Acad. Sci. Paris Sér. I 328(11) (1999), 10391044.CrossRefGoogle Scholar
Karpińska, B. and Urbański, M.. How points escape to infinity under exponential maps. J. Lond. Math. Soc. (2) 73(1) (2006), 141156.CrossRefGoogle Scholar
Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability (Cambridge Studies in Advanced Mathematics, 44). Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
McMullen, C.. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc. 300(1) (1987), 329342.CrossRefGoogle Scholar
Osborne, J. W. and Sixsmith, D. J.. On the set where the iterates of an entire function are neither escaping nor bounded. Ann. Acad. Sci. Fenn. Math. 41(2) (2016), 561578.CrossRefGoogle Scholar
Przytycki, F. and Urbański, M.. Conformal Fractals: Ergodic Theory Methods (London Mathematical Society Lecture Note Series, 371). Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Rempe, L.. Topological dynamics of exponential maps on their escaping sets. Ergod. Th. & Dynam. Sys. 26(6) (2006), 19391975.CrossRefGoogle Scholar
Rempe, L., Rippon, P. J. and Stallard, G. M.. Are Devaney hairs fast escaping? J. Difference Equ. Appl. 16(5–6) (2010), 739762.CrossRefGoogle Scholar
Rippon, P. J. and Stallard, G. M.. Slow escaping points of meromorphic functions. Trans. Amer. Math. Soc. 363(8) (2011), 41714201.CrossRefGoogle Scholar
Rippon, P. J. and Stallard, G. M.. Fast escaping points of entire functions. Proc. Lond. Math. Soc. (3) 105(4) (2012), 787820.CrossRefGoogle Scholar
Rippon, P. J. and Stallard, G. M.. Regularity and fast escaping points of entire functions. Int. Math. Res. Not. IMRN 2014(19) (2014), 52035229.CrossRefGoogle Scholar
Rippon, P. J. and Stallard, G. M.. Annular itineraries for entire functions. Trans. Amer. Math. Soc. 367(1) (2015), 377399.CrossRefGoogle Scholar
Rottenfusser, G., Rückert, J., Rempe, L. and Schleicher, D.. Dynamic rays of bounded-type entire functions. Ann. of Math. (2) 173(1) (2011), 77125.CrossRefGoogle Scholar
Schleicher, D. and Zimmer, J.. Escaping points of exponential maps. J. Lond. Math. Soc. (2) 67(2) (2003), 380400.CrossRefGoogle Scholar
Sixsmith, D. J.. Dimensions of slowly escaping sets and annular itineraries for exponential functions. Ergod. Th. & Dynam. Sys. 36(7) (2016), 22732292.CrossRefGoogle Scholar
Urbański, M. and Zdunik, A.. The finer geometry and dynamics of the hyperbolic exponential family. Michigan Math. J. 51(2) (2003), 227250.CrossRefGoogle Scholar