No CrossRef data available.
Article contents
On the existence of cocycle-invariant Borel probability measures
Published online by Cambridge University Press: 12 April 2019
Abstract
We show that a natural generalization of compressibility is the sole obstruction to the existence of a cocycle-invariant Borel probability measure.
Keywords
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press, 2019
References
Becker, H. and Kechris, A. S.. The Descriptive Set Theory of Polish Group Actions
(London Mathematical Society Lecture Note Series, 232)
. Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar
Dougherty, R., Jackson, S. and Kechris, A. S.. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc.
341(1) (1994), 193–225.CrossRefGoogle Scholar
Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc.
234(2) (1977), 289–324.CrossRefGoogle Scholar
Hopf, E.. Theory of measure and invariant integrals. Trans. Amer. Math. Soc.
34(2) (1932), 373–393.CrossRefGoogle Scholar
Kechris, A. S.. Classical Descriptive Set Theory
(Graduate Texts in Mathematics, 156)
. Springer, New York, 1995.CrossRefGoogle Scholar
Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence
(Lecture Notes in Mathematics, 1852)
. Springer, Berlin, 2004.CrossRefGoogle Scholar
Kechris, A. S., Solecki, S. and Todorcevic, S.. Borel chromatic numbers. Adv. Math.
141(1) (1999), 1–44.CrossRefGoogle Scholar
Miller, B. D.. The existence of measures of a given cocycle. II. Probability measures. Ergod. Th. & Dynam. Sys.
28(5) (2008), 1615–1633.CrossRefGoogle Scholar
Miller, B.. The existence of measures of a given cocycle. I. Atomless, ergodic 𝜎-finite measures. Ergod. Th. & Dynam. Sys.
28(5) (2008), 1599–1613.CrossRefGoogle Scholar
Murray, F. J. and Von Neumann, J.. On rings of operators. Ann. of Math. (2)
37(1) (1936), 116–229.CrossRefGoogle Scholar
Nadkarni, M. G.. On the existence of a finite invariant measure. Proc. Indian Acad. Sci. Math. Sci.
100(3) (1990), 203–220.CrossRefGoogle Scholar
Weiss, B.. Measurable dynamics. Conference in Modern Analysis and Probability (New Haven, Conn., 1982)
(Contemporary Mathematics, 26)
. American Mathematical Society, Providence, RI, 1984, pp. 395–421.CrossRefGoogle Scholar