1. Introduction
In the paper [Reference Castro, Goverse, Lamb and Rasmussen1], the technical Lemmas 4.5 and 4.6 are incorrect. This cascaded into the proofs of Proposition 5.2 and Theorems 2.2, 2.3 and 2.4. Although some of the main theorems of the original paper were impacted, the ideas in [Reference Castro, Goverse, Lamb and Rasmussen1] are robust enough to correct the original proof. In this corrigendum, we provide the necessary modifications to the statements and proofs.
Furthermore, Lemma 3.1(i) has a typo, which propagated to Proposition 4.2(i) and Theorem 2.2(ii). We give the corrected statements below and note that the proof of these results remains correct.
Finally, Theorem 2.4 lacks a condition, which we provide below. Its proof remains essentially the same.
2. Lemma 3.1(i) and Proposition 4.2(i)
Lemma 3.1(i) was incorrectly quoted from [Reference Krengel2, Theorem 3.3.5] and [Reference Schaefer3, Corollary V.8.1]. The correct statement is as follows.
Lemma 3.1.
- 
(i) For every  $f\in L^1(M,\rho )$
, $f\in L^1(M,\rho )$
, $$ \begin{align*}\lim_{n\to \infty} \frac{1}{n} \sum_{i=0}^{n-1}T ^i f = \eta \frac{\mathbb E_\rho[f \mid \mathcal I(T,\rho)]}{\mathbb E_\rho[ \eta \mid \mathcal I(T,\rho)]}\quad \rho\mbox{-almost surely (a.s.)}.\end{align*} $$ $$ \begin{align*}\lim_{n\to \infty} \frac{1}{n} \sum_{i=0}^{n-1}T ^i f = \eta \frac{\mathbb E_\rho[f \mid \mathcal I(T,\rho)]}{\mathbb E_\rho[ \eta \mid \mathcal I(T,\rho)]}\quad \rho\mbox{-almost surely (a.s.)}.\end{align*} $$
This affected the statements of Proposition 4.2(i), which are corrected as follows.
- 
(i) For every  $f\in L^1(M,\mu ),$ $f\in L^1(M,\mu ),$ $$ \begin{align*} {\frac{1}{n}\sum_{i=0}^{n-1}\frac{1}{\unicode{x3bb}^i}{\mathcal P}^i f \xrightarrow{n\to\infty} \eta \int_M f(y)\mu(dy)}\quad \text{ in } L^1(M,\mu) \text{ and } \mu\text{-a.s.} \end{align*} $$ $$ \begin{align*} {\frac{1}{n}\sum_{i=0}^{n-1}\frac{1}{\unicode{x3bb}^i}{\mathcal P}^i f \xrightarrow{n\to\infty} \eta \int_M f(y)\mu(dy)}\quad \text{ in } L^1(M,\mu) \text{ and } \mu\text{-a.s.} \end{align*} $$
3. Lemmas 4.5 and 4.6
 By labelling 
 $\{g_i\}_{i=0}^{m-1}$
 and
$\{g_i\}_{i=0}^{m-1}$
 and 
 $\{C_i\}_{i=0}^{m-1}$
 in Lemma 4.4, we assume that the permutation
$\{C_i\}_{i=0}^{m-1}$
 in Lemma 4.4, we assume that the permutation 
 $\sigma $
 satisfies
$\sigma $
 satisfies 
 $\sigma (i) = i-1\ \text {(mod }m)$
. We write
$\sigma (i) = i-1\ \text {(mod }m)$
. We write 
 $g_j =g_{{j\ (\mathrm {mod}\ m)}}$
 and
$g_j =g_{{j\ (\mathrm {mod}\ m)}}$
 and 
 $C_j = C_{{j\ (\mathrm {mod}\ m)}}$
 for every
$C_j = C_{{j\ (\mathrm {mod}\ m)}}$
 for every 
 $j\in \mathbb N$
.
$j\in \mathbb N$
.
With this convention, Lemmas 4.5 and 4.6, should be combined in a single lemma and corrected as follows.
Lemma 4.5. Suppose the absorbing Markov chain 
 $X_n$
 satisfies Hypothesis H1. Then for every bounded and measurable function
$X_n$
 satisfies Hypothesis H1. Then for every bounded and measurable function 
 $h:M\to \mathbb {R}$
 and
$h:M\to \mathbb {R}$
 and 
 $\ell \in \{0,1,\ldots ,m-1\}$
,
$\ell \in \{0,1,\ldots ,m-1\}$
, 
 $$ \begin{align} \frac{1}{\unicode{x3bb}^{mn+\ell}} {\mathcal P}^{mn+\ell}h \xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1} g_{s}\int_{C_{s+\ell}} h\,d\mu, \end{align} $$
$$ \begin{align} \frac{1}{\unicode{x3bb}^{mn+\ell}} {\mathcal P}^{mn+\ell}h \xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1} g_{s}\int_{C_{s+\ell}} h\,d\mu, \end{align} $$
and

Proof. Due to Proposition 4.2, there exists 
 $\alpha _0,\ldots ,\alpha _{m-1}\in \mathbb C$
 and
$\alpha _0,\ldots ,\alpha _{m-1}\in \mathbb C$
 and 
 $v\in E_{\mathrm {aws}}$
 such that
$v\in E_{\mathrm {aws}}$
 such that 
 ${h = \sum _{s=0}^{m-1} \alpha _s g_s + v}.$
${h = \sum _{s=0}^{m-1} \alpha _s g_s + v}.$
 
Step 1. We show that 
 $v \in E_{\mathrm {aws}}$
 if and only if
$v \in E_{\mathrm {aws}}$
 if and only if 
 $\int _{C_i} v\,d \mu = 0$
 for every
$\int _{C_i} v\,d \mu = 0$
 for every 
 $i\in \{0,1,\ldots , m-1\}.$
 Suppose first that
$i\in \{0,1,\ldots , m-1\}.$
 Suppose first that 
 $v \in E_{\mathrm {aws}}$
. We claim that
$v \in E_{\mathrm {aws}}$
. We claim that  for all
 for all 
 $i \in \{0,1,\ldots , m-1\}$
. Indeed, if
$i \in \{0,1,\ldots , m-1\}$
. Indeed, if  , then
, then  with
 with 
 $\alpha _i \neq 0$
 and
$\alpha _i \neq 0$
 and 
 $w \in E_{\mathrm {aws}}$
. Since
$w \in E_{\mathrm {aws}}$
. Since 
 $\mu (C_i \cap C_j) = 0$
 for all
$\mu (C_i \cap C_j) = 0$
 for all 
 $j \neq i$
, we obtain that
$j \neq i$
, we obtain that 
 $v \not \in E_{\mathrm {aws}}$
. It follows that
$v \not \in E_{\mathrm {aws}}$
. It follows that 
 Reciprocally, assume that 
 $\int _{C_i} v \,d \mu = 0$
 for every
$\int _{C_i} v \,d \mu = 0$
 for every 
 $i\in \{0,1,\ldots ,k-1\}.$
 Write
$i\in \{0,1,\ldots ,k-1\}.$
 Write 
 $v = \sum _{i=0}^{k-1}\alpha _i g_i + w$
, with
$v = \sum _{i=0}^{k-1}\alpha _i g_i + w$
, with 
 $w\in E_{\mathrm {aws}}$
. Since
$w\in E_{\mathrm {aws}}$
. Since 
 $\int g_i\,d \mu = 1$
, we have that
$\int g_i\,d \mu = 1$
, we have that 
 $\alpha _i = \int _{C_i} \alpha _i g_i\,d\mu = \int _{C_i} (\sum _{j=0}^{k-1}\alpha _j g_j + w) \,d\mu = \int _{C_i} v\,{d} \mu = 0.$
 We obtain that
$\alpha _i = \int _{C_i} \alpha _i g_i\,d\mu = \int _{C_i} (\sum _{j=0}^{k-1}\alpha _j g_j + w) \,d\mu = \int _{C_i} v\,{d} \mu = 0.$
 We obtain that 
 $\alpha _i = 0$
 for every
$\alpha _i = 0$
 for every 
 $i\in \{0,1,\ldots , k-1\},$
 which implies
$i\in \{0,1,\ldots , k-1\},$
 which implies 
 $v\in E_{\mathrm {aws}}$
.
$v\in E_{\mathrm {aws}}$
.
 
Step 2. We show that equation (3.1) holds. Integrating 
 $h = \sum _{s=0}^{m-1} \alpha _s g_s + v$
 with respect to
$h = \sum _{s=0}^{m-1} \alpha _s g_s + v$
 with respect to 
 $\mu $
 on
$\mu $
 on 
 $C_i$
, from Step
$C_i$
, from Step 
 $1$
, we obtain that
$1$
, we obtain that 
 $h = \sum _{s=0}^{m-1} g_s \int _{C_s} h\,d \mu + v.$
$h = \sum _{s=0}^{m-1} g_s \int _{C_s} h\,d \mu + v.$
Therefore,
 $$ \begin{align*} \frac{1}{\unicode{x3bb}^{nm + \ell}} {{\mathcal P}}^{nm+\ell} h = \sum_{s=0}^{m-1} g_{s-\ell} \int_{C_s} h\,d\mu + \frac{1}{\unicode{x3bb}^{nm + \ell}} {{\mathcal P}}^{nm+\ell} v \xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1} g_s\int_{C_{s+\ell}} h\,d\mu. \end{align*} $$
$$ \begin{align*} \frac{1}{\unicode{x3bb}^{nm + \ell}} {{\mathcal P}}^{nm+\ell} h = \sum_{s=0}^{m-1} g_{s-\ell} \int_{C_s} h\,d\mu + \frac{1}{\unicode{x3bb}^{nm + \ell}} {{\mathcal P}}^{nm+\ell} v \xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1} g_s\int_{C_{s+\ell}} h\,d\mu. \end{align*} $$
 
Step 3. We show that equation (3.2) holds and conclude the proof of the lemma. From Step 
 $1$
, we have that
$1$
, we have that  for some
 for some 
 $w\in E_{\mathrm {aws}}$
. Given
$w\in E_{\mathrm {aws}}$
. Given 
 $\ell \in \{0,1,\ldots ,m-1\}$
, define
$\ell \in \{0,1,\ldots ,m-1\}$
, define 
 $n_\ell := m n +\ell $
. A direct computation implies that
$n_\ell := m n +\ell $
. A direct computation implies that 

On the one hand, we have that
 $$ \begin{align*} \|J^{n_\ell}_h\|_{L^1(M,\mu)} \leq \frac{1}{n_\ell}\sum_{i=0}^{n_\ell} \bigg\|\frac{{\mathcal P}^i}{\unicode{x3bb}^i} \bigg(\bigg|h \frac{{\mathcal P}^{n_\ell} }{\unicode{x3bb}^{n_\ell-i}}w\bigg|\bigg)\bigg\|_{L^1(M,\mu)}\leq\frac{ \|h\|_\infty }{n_\ell} \sum_{i=0}^{n_\ell-1}\bigg\| \frac{{\mathcal P}^{n_\ell-i} }{\unicode{x3bb}^{n_\ell-i}}w\bigg\|_{L^1(M,\mu)}. \end{align*} $$
$$ \begin{align*} \|J^{n_\ell}_h\|_{L^1(M,\mu)} \leq \frac{1}{n_\ell}\sum_{i=0}^{n_\ell} \bigg\|\frac{{\mathcal P}^i}{\unicode{x3bb}^i} \bigg(\bigg|h \frac{{\mathcal P}^{n_\ell} }{\unicode{x3bb}^{n_\ell-i}}w\bigg|\bigg)\bigg\|_{L^1(M,\mu)}\leq\frac{ \|h\|_\infty }{n_\ell} \sum_{i=0}^{n_\ell-1}\bigg\| \frac{{\mathcal P}^{n_\ell-i} }{\unicode{x3bb}^{n_\ell-i}}w\bigg\|_{L^1(M,\mu)}. \end{align*} $$
From Step 
 $2$
, we obtain that
$2$
, we obtain that 
 $J^{n_\ell } \xrightarrow []{n\to \infty } 0$
 in
$J^{n_\ell } \xrightarrow []{n\to \infty } 0$
 in 
 $L^1(M,\mu )$
.
$L^1(M,\mu )$
.
On the other hand, Step 2 yields that
 $$ \begin{align*} I_h^{n_\ell} &=\sum_{s=0}^{m-1} \frac{\mu(C_s)}{n_\ell} \sum_{j=0}^{n-1} \frac{{\mathcal P}^{m j}}{\unicode{x3bb}^{m j}}\bigg(\sum_{i =0}^{m-1}\frac{{\mathcal P}^i}{\unicode{x3bb}^i}(h g_{s-\ell+i})\bigg)+\sum_{s=0}^{m-1} \frac{\mu(C_s)}{n_\ell} \frac{{\mathcal P}^{mn-1}}{\unicode{x3bb}^{mn -1}} \bigg(\sum_{i=0}^{\ell}\frac{{\mathcal P}^i}{\unicode{x3bb}^i}(h g_{s-\ell+i}\bigg)\bigg)\\ &\quad\xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1} \frac{\mu(C_s)}{m} \sum_{k=0}^{m-1} g_k \int_{C_k}\sum_{i =0}^{m-1}\frac{{\mathcal P}^i}{\unicode{x3bb}^i} (h g_{s-\ell+i})\,d\mu = \sum_{k=0}^{m-1} \mu(C_{\ell+k} )g_k \int_{M} h \eta\,d\mu. \end{align*} $$
$$ \begin{align*} I_h^{n_\ell} &=\sum_{s=0}^{m-1} \frac{\mu(C_s)}{n_\ell} \sum_{j=0}^{n-1} \frac{{\mathcal P}^{m j}}{\unicode{x3bb}^{m j}}\bigg(\sum_{i =0}^{m-1}\frac{{\mathcal P}^i}{\unicode{x3bb}^i}(h g_{s-\ell+i})\bigg)+\sum_{s=0}^{m-1} \frac{\mu(C_s)}{n_\ell} \frac{{\mathcal P}^{mn-1}}{\unicode{x3bb}^{mn -1}} \bigg(\sum_{i=0}^{\ell}\frac{{\mathcal P}^i}{\unicode{x3bb}^i}(h g_{s-\ell+i}\bigg)\bigg)\\ &\quad\xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1} \frac{\mu(C_s)}{m} \sum_{k=0}^{m-1} g_k \int_{C_k}\sum_{i =0}^{m-1}\frac{{\mathcal P}^i}{\unicode{x3bb}^i} (h g_{s-\ell+i})\,d\mu = \sum_{k=0}^{m-1} \mu(C_{\ell+k} )g_k \int_{M} h \eta\,d\mu. \end{align*} $$
 Hence, 
 $I_h^{n_\ell } + J_{h}^{n_\ell } \xrightarrow []{n\to \infty }\sum _{k=0}^{m-1} \mu (C_{\ell +k} )g_k \int _{M} h \eta \,d\mu $
 in
$I_h^{n_\ell } + J_{h}^{n_\ell } \xrightarrow []{n\to \infty }\sum _{k=0}^{m-1} \mu (C_{\ell +k} )g_k \int _{M} h \eta \,d\mu $
 in 
 $L^1(M,\mu ),$
 which concludes the proof of Step 3.
$L^1(M,\mu ),$
 which concludes the proof of Step 3.
4. Proposition 5.2
As a consequence of the corrected Lemma 4.5 , Proposition 5.2 reads as follows.
Proposition 5.2. Let 
 $X_n$
 be an absorbing Markov chain satisfying Hypothesis H1. Suppose that one of the following items holds:
$X_n$
 be an absorbing Markov chain satisfying Hypothesis H1. Suppose that one of the following items holds: 
- 
(a) there exists  $K>0$
 such that $K>0$
 such that $\mu (\{K<\eta \}) =1$
 almost surely; $\mu (\{K<\eta \}) =1$
 almost surely;
- 
(b) there exists  $ g\in L^1(M,\mu )$
 such that $ g\in L^1(M,\mu )$
 such that $ ({1}/{\unicode{x3bb} ^n}) {\mathcal P}^n(x,M) \leq g \ \text {for every }n\in \mathbb N$
; $ ({1}/{\unicode{x3bb} ^n}) {\mathcal P}^n(x,M) \leq g \ \text {for every }n\in \mathbb N$
;
- 
(c) the absorbing Markov chain  $X_n$
 fulfils Hypothesis H1. $X_n$
 fulfils Hypothesis H1.
 Then for every 
 $h\in L^\infty (M,\mu )$
 and
$h\in L^\infty (M,\mu )$
 and 
 $\ell \in \{0,1,\ldots ,m-1\}$
,
$\ell \in \{0,1,\ldots ,m-1\}$
, 
 $$ \begin{align} \lim_{n\to \infty} \frac{1}{n}\sum_{i=0}^{mn+\ell-1}\frac{{\mathcal P}^i}{\unicode{x3bb}^i} \bigg(h\frac{{\mathcal P}^{mn+\ell-i}(\cdot,M)}{\unicode{x3bb}^{mn+\ell-i}} \bigg) \xrightarrow{n\to\infty} \sum_{s=0}^{m-1}\mu(C_{s+\ell})g_s\int_M h(y)\eta(y)\mu(dy)\ \mu\text{-a.s.} \end{align} $$
$$ \begin{align} \lim_{n\to \infty} \frac{1}{n}\sum_{i=0}^{mn+\ell-1}\frac{{\mathcal P}^i}{\unicode{x3bb}^i} \bigg(h\frac{{\mathcal P}^{mn+\ell-i}(\cdot,M)}{\unicode{x3bb}^{mn+\ell-i}} \bigg) \xrightarrow{n\to\infty} \sum_{s=0}^{m-1}\mu(C_{s+\ell})g_s\int_M h(y)\eta(y)\mu(dy)\ \mu\text{-a.s.} \end{align} $$
In addition,
 $$ \begin{align} \frac{1}{\unicode{x3bb}^{mn+\ell}} {\mathcal P}^{nm+\ell} h \xrightarrow{n\to\infty} \sum_{s=0}^{m-1}\mu(C_{s+\ell})g_s \int_M h(x) \mu(dx)\, \mu\text{-a.s.} \end{align} $$
$$ \begin{align} \frac{1}{\unicode{x3bb}^{mn+\ell}} {\mathcal P}^{nm+\ell} h \xrightarrow{n\to\infty} \sum_{s=0}^{m-1}\mu(C_{s+\ell})g_s \int_M h(x) \mu(dx)\, \mu\text{-a.s.} \end{align} $$
Proof. The proof of the theorem assuming that either item (a) or item (b) holds remains mostly the same. The only correction to be made is on page 
 $16$
 line
$16$
 line 
 $5$
, where the term
$5$
, where the term 
 $(1/\unicode{x3bb} )^n{\mathcal P}(x,M)$
 should be replaced by
$(1/\unicode{x3bb} )^n{\mathcal P}(x,M)$
 should be replaced by 
 $(1/\unicode{x3bb} )^n{\mathcal P}^n(x,M)$
.
$(1/\unicode{x3bb} )^n{\mathcal P}^n(x,M)$
.
 Now, we prove item (c). For every 
 $j\in \mathbb N$
, define the set
$j\in \mathbb N$
, define the set 
 $K_j:= \{x\in M; k(x,\cdot )\in L^{\infty }(M,\hspace{-0.8pt}\mu )\}$
 and the bounded operator
$K_j:= \{x\in M; k(x,\cdot )\in L^{\infty }(M,\hspace{-0.8pt}\mu )\}$
 and the bounded operator 
 $\mathcal G_{j}\hspace{-0.8pt}:\hspace{-0.8pt}L^{1}(M,\mu )\hspace{-0.8pt}\to\hspace{-0.8pt} L^\infty (K_j,\mu )$
,
$\mathcal G_{j}\hspace{-0.8pt}:\hspace{-0.8pt}L^{1}(M,\mu )\hspace{-0.8pt}\to\hspace{-0.8pt} L^\infty (K_j,\mu )$
,  By composing
 By composing 
 ${\mathcal G}_j$
 to equations (3.1) and (3.2) considering
${\mathcal G}_j$
 to equations (3.1) and (3.2) considering 
 $\ell -1$
 instead of
$\ell -1$
 instead of 
 $\ell $
, from Lemma 4.5 and the fact that
$\ell $
, from Lemma 4.5 and the fact that 
 $\mathcal G_j$
 is a bounded operator, we obtain that equations (4.1) and (4.2) converge for
$\mathcal G_j$
 is a bounded operator, we obtain that equations (4.1) and (4.2) converge for 
 $\mu $
-almost every
$\mu $
-almost every 
 $x\in K_j$
. Finally, since Hypothesis H1 implies that
$x\in K_j$
. Finally, since Hypothesis H1 implies that 
 $\mu (\bigcup _{j\geq 1} K_j) = 1$
, we obtain the result.
$\mu (\bigcup _{j\geq 1} K_j) = 1$
, we obtain the result.
5. Theorem 2.2
The corrections of Lemma 4.5 also affect Theorem 2.2.
Theorem 2.2. Let 
 $X_n$
 be an absorbing Markov chain fulfilling Hypothesis H1. Then the following assertions hold:
$X_n$
 be an absorbing Markov chain fulfilling Hypothesis H1. Then the following assertions hold: 
- 
(i) there exist a natural number  $m\in \mathbb N$
 and sets $m\in \mathbb N$
 and sets $C_0, C_1, \ldots , C_{m-1}=:C_{-1} \in \mathscr B(M)$
 such that $C_0, C_1, \ldots , C_{m-1}=:C_{-1} \in \mathscr B(M)$
 such that for every for every $i\in \{0,1,\ldots ,m-1\}$
; $i\in \{0,1,\ldots ,m-1\}$
;
- 
(ii) for every  $f\in L^1(M,\mu )$
, $f\in L^1(M,\mu )$
, $ ({1}/{n}) \sum _{i=0}^{n-1} ({1}/{\unicode{x3bb} ^i}){\mathcal P}^i f \xrightarrow {n\to \infty } \eta \int _M f(y) \mu (dy)$
 in $ ({1}/{n}) \sum _{i=0}^{n-1} ({1}/{\unicode{x3bb} ^i}){\mathcal P}^i f \xrightarrow {n\to \infty } \eta \int _M f(y) \mu (dy)$
 in $L^1(M,\mu )$
 and $L^1(M,\mu )$
 and $\mu $
-a.s.; $\mu $
-a.s.;
- 
(iii) there exist non-negative functions  $g_0,g_1,\ldots ,g_{m-1}=:g_{-1}\in L^1(M,\mu )$
, satisfying for every $g_0,g_1,\ldots ,g_{m-1}=:g_{-1}\in L^1(M,\mu )$
, satisfying for every $$ \begin{align*}{\mathcal P} g_{j} = \unicode{x3bb} g_{j-1}\quad \text{and}\quad \|g_j\|_{L^1(M,\mu)}=1\end{align*} $$ $$ \begin{align*}{\mathcal P} g_{j} = \unicode{x3bb} g_{j-1}\quad \text{and}\quad \|g_j\|_{L^1(M,\mu)}=1\end{align*} $$ $j\in \{0,1,\ldots ,n-1\}$
, such that given $j\in \{0,1,\ldots ,n-1\}$
, such that given $\ell \in \{0,1,\ldots ,m-1\}$
 and $\ell \in \{0,1,\ldots ,m-1\}$
 and $h\in L^\infty (M,\mu )$
, the following limit holds: $h\in L^\infty (M,\mu )$
, the following limit holds: $$ \begin{align*} \frac{1}{\unicode{x3bb}^{nm+\ell}} {\mathcal P}^{nm+\ell} h \xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1}g_s \int_M h(x) \mu(dx);\end{align*} $$ $$ \begin{align*} \frac{1}{\unicode{x3bb}^{nm+\ell}} {\mathcal P}^{nm+\ell} h \xrightarrow[L^1(M,\mu)]{n\to\infty} \sum_{s=0}^{m-1}g_s \int_M h(x) \mu(dx);\end{align*} $$
- 
(iv) if in addition, we assume that M is a Polish space, then for every  $h\in L^\infty (M,\mu )$
, (5.1)in the $h\in L^\infty (M,\mu )$
, (5.1)in the $$ \begin{align} \bigg(x\mapsto \mathbb E_x \bigg[\frac{1}{n} \sum_{i=0}^{n-1}h\circ X_i \mid \tau> n\bigg]\bigg) \xrightarrow{n\to\infty} \int_M h(y) \eta(y) \mu(dy) \end{align} $$ $$ \begin{align} \bigg(x\mapsto \mathbb E_x \bigg[\frac{1}{n} \sum_{i=0}^{n-1}h\circ X_i \mid \tau> n\bigg]\bigg) \xrightarrow{n\to\infty} \int_M h(y) \eta(y) \mu(dy) \end{align} $$ $L^\infty (M,\mu )$
-weak $L^\infty (M,\mu )$
-weak ${}^*$
 topology. In particular, we obtain that equation (5.1) also converges weakly in ${}^*$
 topology. In particular, we obtain that equation (5.1) also converges weakly in $L^1(M,\mu ).$ $L^1(M,\mu ).$
Proof. The proof of assertions (i), (ii) and (iii) remains unchanged. To prove assertion (iv), fix 
 $\ell \in \{0,1,\ldots ,m-1\}$
, repeating the proof of [Reference Castro, Goverse, Lamb and Rasmussen1, Lemma 2.2] but changing
$\ell \in \{0,1,\ldots ,m-1\}$
, repeating the proof of [Reference Castro, Goverse, Lamb and Rasmussen1, Lemma 2.2] but changing 
 $g_{n}$
 by
$g_{n}$
 by 
 $g_{mn+\ell }$
, we obtain that
$g_{mn+\ell }$
, we obtain that 
 $g_{nm+\ell }$
 converges to the right-hand side of equation (5.1) in
$g_{nm+\ell }$
 converges to the right-hand side of equation (5.1) in 
 $L^\infty (M,\mu )$
-weak
$L^\infty (M,\mu )$
-weak
 $^*$
. Since
$^*$
. Since 
 $\ell \in \{0,1,\ldots ,m-1\}$
 is arbitrary, we obtain that assertion (iv) follows.
$\ell \in \{0,1,\ldots ,m-1\}$
 is arbitrary, we obtain that assertion (iv) follows.
7. Theorem 2.4
Theorem 2.4 requires an extra assumption.
Theorem 2.4. Let 
 $X_n$
 be an absorbing Markov chain fulfilling Hypothesis H2, and suppose that
$X_n$
 be an absorbing Markov chain fulfilling Hypothesis H2, and suppose that 
 ${\mathcal P} f|_{K_i}\in \mathcal C^0(K_i)$
 for every
${\mathcal P} f|_{K_i}\in \mathcal C^0(K_i)$
 for every 
 $f\in L^1(M,\mu )$
 and
$f\in L^1(M,\mu )$
 and 
 $i\in \mathbb N$
, where
$i\in \mathbb N$
, where 
 $\{K_i\}_{i\in \mathbb N}$
 is the nested sequence of compact sets given by the second part of Hypothesis H2. Then, given
$\{K_i\}_{i\in \mathbb N}$
 is the nested sequence of compact sets given by the second part of Hypothesis H2. Then, given 
 $h\in L^\infty (M,\mu )$
, equation (2.3) holds for every
$h\in L^\infty (M,\mu )$
, equation (2.3) holds for every 
 $x\in (\bigcup _{i\in \mathbb N} K_i)\cap \{\eta>0\}.$
$x\in (\bigcup _{i\in \mathbb N} K_i)\cap \{\eta>0\}.$
 In the case where 
 $m=1$
 in Theorem 2.2(i), equation (2.4) holds for every
$m=1$
 in Theorem 2.2(i), equation (2.4) holds for every 
 $x\in ( \bigcup _{i\in \mathbb N} K_i)\cap \{\eta>0\}$
.
$x\in ( \bigcup _{i\in \mathbb N} K_i)\cap \{\eta>0\}$
.
Proof. Observe that 
 $\mathcal G_j:L^1(M,\mu ) \to \mathcal C^0(K_j)$
,
$\mathcal G_j:L^1(M,\mu ) \to \mathcal C^0(K_j)$
,  is a bounded linear operator since it is a positive operator between two Banach lattices [Reference Schaefer3, Theorem 5.3]. Then the proof follows from the same arguments as given in the new proof of Proposition 
5.2
(c) and equation (5.3).
 is a bounded linear operator since it is a positive operator between two Banach lattices [Reference Schaefer3, Theorem 5.3]. Then the proof follows from the same arguments as given in the new proof of Proposition 
5.2
(c) and equation (5.3).
Acknowledgment
The authors thank Bernat Bassols Cornudella for the valuable discussions and for pointing out some of the inaccuracies in the original publication.
 
  
 
 
 
 
 
 
 
 
 
 
 for every
 for every  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
