Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T20:11:05.825Z Has data issue: false hasContentIssue false

Periodic behavior on trees

Published online by Cambridge University Press:  08 June 2005

Ll. ALSEDÀ
Affiliation:
Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain (e-mail: alseda@mat.uab.es)
D. JUHER
Affiliation:
Departament d'Informàtica i Matemàtica Aplicada, Universitat de Girona, Lluís Santaló s/n, 17071 Girona, Spain (e-mail: juher@ima.udg.es)
P. MUMBRÚ
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain (e-mail: mumbru@mat.ub.es)

Abstract

We characterize the set of periods for tree maps. More precisely, we prove that the set of periods of any tree map $f:T \to T$ is the union of finitely many initial segments of Baldwin's orderings $_p{\geq}$ and a finite set $\mathcal{F}$. The possible values of p and explicit upper bounds for the size of $\mathcal{F}$ are given in terms of the combinatorial properties of the tree T. Conversely, given any set $\mathcal{A}$ which is a union of finitely many initial segments of Baldwin's orderings $_p{\geq}$ with p of the above type and a finite set, we prove that there exists a tree map whose set of periods is $\mathcal{A}$.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)