Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T18:24:46.506Z Has data issue: false hasContentIssue false

Polynomial decay of correlations in linked-twist maps

Published online by Cambridge University Press:  04 April 2013

J. SPRINGHAM
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK email uniquealphabeticcombination@gmail.comr.sturman@leeds.ac.uk
R. STURMAN
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK email uniquealphabeticcombination@gmail.comr.sturman@leeds.ac.uk

Abstract

Linked-twist maps are area-preserving, piecewise diffeomorphisms, defined on a subset of the torus. They are non-uniformly hyperbolic generalizations of the well-known Arnold cat map. We show that a class of canonical examples have polynomial decay of correlations for $\alpha $-Hölder observables, of order $1/ n$.

Type
Research Article
Copyright
Copyright ©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artuso, R.. Correlation decay and return time statistics. Phys. D 131 (1–4) (1999), 6877.Google Scholar
Baladi, V.. Positive Transfer Operators and Decay of Correlations. World Scientific, Singapore, 2000.Google Scholar
Burton, R. and Easton, R.. Ergodicity of linked twist mappings. Proc. Int. Conf., Northwestern University, Evanston, IL, 1979 (Lecture Notes in Mathematics, 819). Springer, New York, 1980, pp. 3549.Google Scholar
Cerbelli, S. and Giona, M.. A continuous archetype of nonuniform chaos in area-preserving dynamical systems. J. Nonlinear Sci. 15 (6) (2005), 387421.Google Scholar
Chernov, N.. Decay of correlations in dispersing billiards. J. Stat. Phys. 94 (1999), 513556.Google Scholar
Chernov, N. and Haskell, C.. Non-uniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1) (1996), 1944.Google Scholar
Chernov, N. and Young, L.. Decay of correlations for Lorentz gases and hard balls. Hard Ball Systems and the Lorentz Gas (Encyclopedia of Mathematical Sciences, 101). Ed. D. Szasz. Springer, Berlin, pp. 89–120.Google Scholar
Chernov, N. and Zhang, H.-K.. Billiards with polynomial mixing rates. Nonlinearity 18 (2005), 15271533.Google Scholar
Chernov, N. and Zhang, H.-K.. Improved estimates for correlations in billiards. Comm. Math. Phys. 277 (2008), 305321.Google Scholar
Devaney, R. L.. Linked twist mappings are almost Anosov. Proc. Int. Conf., Northwestern University, Evanston, IL, 1979 (Lecture Notes in Mathematics, 819). Springer, New York, 1980, pp. 121145.Google Scholar
Gouillart, E., Dauchot, O., Dubrulle, B., Roux, S. and Thiffeault, J.. Slow decay of concentration variance due to no-slip walls in chaotic mixing. Phys. Rev. E 78 (2) (2008).Google Scholar
Gouillart, E., Kuncio, N., Dauchot, O., Dubrulle, B., Roux, S. and Thiffeault, J.. Walls inhibit chaotic mixing. Phys. Rev. Lett. 99 (1994), 114501.Google Scholar
Katok, A., Strelcyn, J.-M., Ledrappier, F. and Przytycki, F.. Invariant Manifolds, Entropy and Billards: Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, Berlin, 1986.Google Scholar
MacKay, R. S.. Cerbelli and Giona’s map is pseudo-Anosov and nine consequences. J. Nonlinear Sci. 16 (2006), 415434.Google Scholar
Markarian, R.. Billiards with polynomial decay of correlations. Ergod. Th. & Dynam. Sys. 24 (2004), 177197.Google Scholar
Nicol, M.. A Bernoulli toral linked twist map without positive Lyapunov exponents. Proc. Amer. Math. Soc. 124 (4) (1996), 12531263.Google Scholar
Nicol, M.. Stochastic stability of Bernoulli toral linked twist maps of finite and infinite entropy. Ergod. Th. & Dynam. Sys. 16 (1996), 493518.Google Scholar
Oseledec, V. I.. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197231.Google Scholar
Pesin, Y. B.. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32 (1977), 55114.Google Scholar
Przytycki, F.. Ergodicity of toral linked twist mappings. Ann. Sci. Éc. Norm. Supér. (4) 16 (1983), 345354.CrossRefGoogle Scholar
Springham, J.. Ergodic properties of linked-twist maps. PhD Thesis, University of Bristol, 2008.Google Scholar
Springham, J. and Wiggins, S.. Bernoulli linked-twist maps in the plane. Dyn. Syst. 25 (4) (2010), 483499.Google Scholar
Sturman, R., Ottino, J. M. and Wiggins, S.. The Mathematical Foundations of Mixing. Cambridge University Press, Cambridge, 2006.Google Scholar
Sturman, R. and Springham, J.. Rate of chaotic mixing and boundary behaviour. Phys. Rev. E 87 (2013), 012906.Google Scholar
Wiggins, S. and Ottino, J. M.. Foundations of chaotic mixing. Philos. Trans. R. Soc. 362 (1818) (2004), 937970.Google Scholar
Wojtkowski, M.. Linked twist mappings have the $K$-property. Nonlinear Dynamics (Proc. Int. Conf., New York, 1979) (Annals of the New York Academy of Sciences, 357). New York Academy of Sciences, New York, 1980, pp. 6576.Google Scholar
Young, L.-S.. Statistical properties of systems with some hyperbolicity. Ann. of Math. (2) 147 (1998), 585650.Google Scholar
Young, L.-S.. Recurrence times and rates of mixing. Israel J. Math. 110 (1999), 153188.Google Scholar