No CrossRef data available.
Published online by Cambridge University Press: 03 March 2025
We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.
 $\mathrm{SU}(2)$
. Invent. Math. 171(1) (2008), 83–121.CrossRefGoogle Scholar
$\mathrm{SU}(2)$
. Invent. Math. 171(1) (2008), 83–121.CrossRefGoogle Scholar $\mathrm{SL}_2(F_p)$
. Ann. of Math. (2) 167(2) (2008), 625–642.CrossRefGoogle Scholar
$\mathrm{SL}_2(F_p)$
. Ann. of Math. (2) 167(2) (2008), 625–642.CrossRefGoogle Scholar ${\mathbb{R}}^n$
. J. Anal. Math. 143(2) (2021), 763–800.CrossRefGoogle Scholar
${\mathbb{R}}^n$
. J. Anal. Math. 143(2) (2021), 763–800.CrossRefGoogle Scholar ${\mathbb{H}}^3$
 and
${\mathbb{H}}^3$
 and 
 ${\mathbb{H}}^2\times {\mathbb{H}}^2$
. Invent. Math. 231(3) (2023), 1141–1237.CrossRefGoogle Scholar
${\mathbb{H}}^2\times {\mathbb{H}}^2$
. Invent. Math. 231(3) (2023), 1141–1237.CrossRefGoogle Scholar $\mathrm{SL}_3(\mathbb{R})$
. Ann. of Math., to appear. Preprint 2024, arXiv:2208.02525.CrossRefGoogle Scholar
$\mathrm{SL}_3(\mathbb{R})$
. Ann. of Math., to appear. Preprint 2024, arXiv:2208.02525.CrossRefGoogle Scholar