Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T00:41:50.588Z Has data issue: false hasContentIssue false

Some results on minimizers and stable solutions of a variational problem

Published online by Cambridge University Press:  10 June 2011

ALBERTO FARINA
Affiliation:
LAMFA – CNRS UMR 6140, Université de Picardie Jules Verne, Faculté des Sciences, 33, rue Saint-Leu, 80039 Amiens CEDEX 1, France (email: alberto.farina@u-picardie.fr)
ENRICO VALDINOCI
Affiliation:
Università di Roma Tor Vergata, Dipartimento di Matematica, via della ricerca scientifica, 1, I-00133 Rome, Italy (email: enrico@mat.uniroma3.it)

Abstract

We consider the functional in a periodic setting. We discuss whether the minimizers or the stable solutions satisfy some symmetry or monotonicity properties, with special emphasis on the autonomous case when F is x-independent. In particular, we give an answer to a question posed by Victor Bangert when F is autonomous in dimension n≤3 and in any dimension for non-zero rotation vectors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AAC01]Alberti, G., Ambrosio, L. and Cabré, X.. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65(1–3) (2001), 933, special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday.CrossRefGoogle Scholar
[AC00]Ambrosio, L. and Cabré, X.. Entire solutions of semilinear elliptic equations in ℝ3 and a conjecture of De Giorgi. J. Amer. Math. Soc. 13(4) (2000), 725739 (electronic).CrossRefGoogle Scholar
[AJM02]Alessio, F., Jeanjean, L. and Montecchiari, P.. Existence of infinitely many stationary layered solutions in ℝ2 for a class of periodic Allen–Cahn equations. Comm. Partial Differential Equations 27(7–8) (2002), 15371574.CrossRefGoogle Scholar
[AM05]Alessio, F. and Montecchiari, P.. Entire solutions in ℝ2 for a class of Allen–Cahn equations. ESAIM Control Optim. Calc. Var. 11(4) (2005), 633672 (electronic).CrossRefGoogle Scholar
[Aub83]Aubry, S.. The twist map, the extended Frenkel–Kontorova model and the devil’s staircase. Phys. D 7(1–3) (1983), 240258.CrossRefGoogle Scholar
[Aue01]Auer, F.. Uniqueness of least area surfaces in the 3-torus. Math. Z. 238(1) (2001), 145176.CrossRefGoogle Scholar
[Ban89]Bangert, V.. On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(2) (1989), 95138.CrossRefGoogle Scholar
[Ban90]Bangert, V.. Laminations of 3-tori by least area surfaces. Analysis, et cetera. Academic Press, Boston, MA, 1990, pp. 85114.CrossRefGoogle Scholar
[BCN97]Berestycki, H., Caffarelli, L. and Nirenberg, L.. Further qualitative properties for elliptic equations in unbounded domains. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 25(1–2) (1998), 6994, (1997), dedicated to Ennio De Giorgi.Google Scholar
[Bes05]Bessi, U.. Many solutions of elliptic problems on ℝn of irrational slope. Comm. Partial Differential Equations 30(10–12) (2005), 17731804.CrossRefGoogle Scholar
[CC95]Caffarelli, L. A. and Córdoba, A.. Uniform convergence of a singular perturbation problem. Comm. Pure Appl. Math. 48(1) (1995), 112.CrossRefGoogle Scholar
[CdlL01]Caffarelli, L. A. and de la Llave, R.. Planelike minimizers in periodic media. Comm. Pure Appl. Math. 54(12) (2001), 14031441.CrossRefGoogle Scholar
[DG79]De Giorgi, E.. Convergence problems for functionals and operators. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978). Pitagora, Bologna, 1979, pp. 131188.Google Scholar
[dlLV07]de la Llave, R. and Valdinoci, E.. Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media. Adv. Math. 215(1) (2007), 379426.CrossRefGoogle Scholar
[dPKW08]del Pino, M., Kowalczyk, M. and Wei, J.. A counterexample to a conjecture by De Giorgi in large dimensions. C. R. Math. Acad. Sci. Paris 346(23–24) (2008), 12611266.CrossRefGoogle Scholar
[dPKW09]del Pino, M., Kowalczyk, M. and Wei, J.. On De Giorgi conjecture in dimension N≥9. Preprint, 2009, http://eprintweb.org/S/article/math/0806.3141.Google Scholar
[Far07]Farina, A.. Liouville-type theorems for elliptic problems. Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. IV. Elsevier/North-Holland, Amsterdam, 2007, pp. 61116.CrossRefGoogle Scholar
[FCS80]Fischer-Colbrie, D. and Schoen, R.. The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33(2) (1980), 199211.CrossRefGoogle Scholar
[FSV08]Farina, A., Sciunzi, B. and Valdinoci, E.. Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(4) (2008), 741791.Google Scholar
[FV09]Farina, A. and Valdinoci, E.. The state of the art for a conjecture of De Giorgi and related problems. Recent Progress on Reaction–Diffusion Systems and Viscosity Solutions. World Scientific Publishers, Hackensack, NJ, 2009, pp. 7496.CrossRefGoogle Scholar
[FV11]Farina, A. and Valdinoci, E.. 1D symmetry for solutions of semilinear and quasilinear elliptic equations. Trans. Amer. Math. Soc. 363(2) (2011), 579609.CrossRefGoogle Scholar
[GG98]Ghoussoub, N. and Gui, C.. On a conjecture of De Giorgi and some related problems. Math. Ann. 311(3) (1998), 481491.CrossRefGoogle Scholar
[JGV09]Junginger-Gestrich, H. and Valdinoci, E.. Some connections between results and problems of De Giorgi, Moser and Bangert. Z. Angew. Math. Phys. 60(3) (2009), 393401.CrossRefGoogle Scholar
[Mat82]Mather, J. N.. Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4) (1982), 457467.CrossRefGoogle Scholar
[Mos86]Moser, J.. Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(3) (1986), 229272.CrossRefGoogle Scholar
[MP78]Moss, W. F. and Piepenbrink, J.. Positive solutions of elliptic equations. Pacific J. Math. 75(1) (1978), 219226.CrossRefGoogle Scholar
[Rab04]Rabinowitz, P. H.. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete Contin. Dyn. Syst. 10(1–2) (2004), 507515.CrossRefGoogle Scholar
[RS03]Rabinowitz, P. H. and Stredulinsky, E.. Mixed states for an Allen–Cahn type equation. Comm. Pure Appl. Math. 56(8) (2003), 10781134.CrossRefGoogle Scholar
[RS04]Rabinowitz, P. H. and Stredulinsky, E.. On some results of Moser and of Bangert. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(5) (2004), 673688.CrossRefGoogle Scholar
[Sav09]Savin, O.. Regularity of flat level sets in phase transitions. Ann. of Math. (2) 169(1) (2009), 4178.CrossRefGoogle Scholar
[Val04]Valdinoci, E.. Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals. J. Reine Angew. Math. 574 (2004), 147185.Google Scholar