Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T09:38:41.081Z Has data issue: false hasContentIssue false

Stability of Lyapunov exponents

Published online by Cambridge University Press:  19 September 2008

F. Ledrappier
Affiliation:
Laboratoire de Probabilités, Université Paris VI, 4, Place Jussieu, Tour 56, F-75232 Paris Cedex 05, France
L.-S. Young
Affiliation:
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Abstract

We consider small random perturbations of matrix cocycles over Lipschitz homeomorphisms of compact metric spaces. Lyapunov exponents are shown to be stable provided that our perturbations satisfy certain regularity conditions. These results are applicable to dynamical systems, particularly to volume-preserving diffeomorphisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[FK]Furstenberg, H. & Kifer, Y.. Random matrix products and measures on projective spaces. Israel J. Math. 46 (1–2) (1983), 1232.Google Scholar
[H]Hennion, H.. Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes. Zeit. für Warsch. v. Geb. 67 (1984), 265278.CrossRefGoogle Scholar
[IW]Ikeda, N. & Watanabe, S.. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, (1981).Google Scholar
[K1]Kifer, Y.. General random perturbations of hyperbolic and expanding transformations. J. d'Analyse Math. 47 (1986), 111150.CrossRefGoogle Scholar
[K2]Kifer, Y.. Ergodic theory of random transformations. Progress in Probability and Statistics. Birkhauser, 1986.Google Scholar
[K3]Kifer, Y.. On the asymptotics of the transition density for processes with small diffusion. Theory of Prob. Appl. 21 (1976), 513522.Google Scholar
[KS]Kifer, Y. & Slud, E.. Perturbations of random matrix products in a reducible case. Ergod. Th. & Dynam. Sys. 2 (1982), 367382.Google Scholar
[Ku]Kunita, H.. Stochastic differential equations and stochastic flow of diffeomorphisms, Lecture Notes in Math. 1097 Springer, 1984.Google Scholar
[LY]Ledrappier, F. & Young, L.-S.. Entropy formula for random transformations. Prob. Th. & Rel. Fields 80 (1988), 217240.Google Scholar
[M]Mañé, R.. In preparation.Google Scholar
[MS]Martinelli, F. & Scoppola, E.. Small random perturbations of dynamical systems: exponential loss of memory of the initial condition. Commun. Math. Phys. 120 (1988), 2569.Google Scholar
[R]Ruelle, D.. Ergodic theory of differentiable dynamical systems. Publ. Math. IHES 50 (1979), 2758.Google Scholar
[Y]Young, L.-S.. Random perturbations of matrix cocyles. Ergod. Th. & Dynam. Sys. (1986) 627637.Google Scholar