Published online by Cambridge University Press: 19 September 2008
We study a new topological classification of suspension flows on subshifts of finite type, and obtain a new proof of a theorem of Boyle's which states that, in an appropriate sense, all such flows are alike. We prove that the stochastic version of this classification is non-trivial by exhibiting a certain invariant, and show that this invariant is complete in a particular case, although not in general. Symbolic flows are important as models of basic sets of Axiom A flows, and so we discuss the significance of our results for this latter type of flow.