Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T18:15:40.162Z Has data issue: false hasContentIssue false

There is no minimal action of ℤ2 on the plane

Published online by Cambridge University Press:  05 April 2011

FRÉDÉRIC LE ROUX*
Affiliation:
Laboratoire de Mathématique (CNRS UMR 8628), Université Paris Sud, 91405 Orsay Cedex, France (email: frederic.le-roux@math.u-psud.fr)

Abstract

We prove that there is no minimal action of ℤ2 by homeomorphisms on the plane. This may be seen as a generalization of Le Calvez–Yoccoz’s theorem: there exists no minimal homeomorphism of the infinite annulus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BarFra93]Barge, M. and Franks, J.. Recurrent sets for planar homeomorphisms. From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990). Springer, New York, 1993, pp. 186195.CrossRefGoogle Scholar
[BegLeR03]Béguin, F. and Le Roux, F.. Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb. Bull. Soc. Math. France 131 (2003), 149210.CrossRefGoogle Scholar
[Ber00]Bernardes, N. C.. On the set of points with a dense orbit. Proc. Amer. Math. Soc. 128(11) (2000), 34213423.CrossRefGoogle Scholar
[Bes51]Besicovitch, A. S.. A problem on topological transformations of the plane. II. Proc. Cambridge Philos. Soc. 47 (1951), 3845.CrossRefGoogle Scholar
[Bon04]Bonino, M.. A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere. Fund. Math. 182(1) (2004), 140.CrossRefGoogle Scholar
[Bro12]Brouwer, L. E. J.. Beweis des ebenen Translationssatzes. Math. Ann. 72 (1912), 3754.CrossRefGoogle Scholar
[ConKol94]Constantin, A. and Kolev, B.. The theorem of Kérékjártó on periodic homeomorphisms of the disk and the sphere. Enseign. Math. (2) 40(3–4) (1994), 193204.Google Scholar
[Fra92]Franks, J.. A new proof of the Brouwer plane translation theorem. Ergod. Th. & Dynam. Sys. 12 (1992), 217226.CrossRefGoogle Scholar
[Ham65]Hamstrom, M.-E.. Homotopy properties of the space of homeomorphisms on P 2 and the Klein bottle. Trans. Amer. Math. Soc. 120 (1965), 3745.Google Scholar
[Gui94]Guillou, L.. Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré–Birkhoff. Topology 33 (1994), 331351.CrossRefGoogle Scholar
[HomTer53]Homma, T. and Terasaka, H.. On the structure of the plane translation of Brouwer. Osaka J. Math. 5 (1953), 233266.Google Scholar
[LecYoc97]Le Calvez, P. and Yoccoz, J.-C.. Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe. Ann. of Math. (2) 146(2) (1997), 241293.CrossRefGoogle Scholar
[LeR04]Le Roux, F.. Homéomorphismes de surfaces: théorèmes de la fleur de Leau–Fatou et de la variété stable. Astérisque 292 (2004).Google Scholar