Published online by Cambridge University Press: 11 June 2020
Given a ${\mathcal{C}}^{\infty }$ expanding map $T$ of the circle, we construct a Hilbert space ${\mathcal{H}}$ of smooth functions on which the transfer operator ${\mathcal{L}}$ associated to $T$ acts as a compact operator. This result is made quantitative (in terms of singular values of the operator ${\mathcal{L}}$ acting on ${\mathcal{H}}$) using the language of Denjoy–Carleman classes. Moreover, the nuclear power decomposition of Baladi and Tsujii can be performed on the space ${\mathcal{H}}$, providing a bound on the growth of the dynamical determinant associated to ${\mathcal{L}}$.