Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T06:05:58.767Z Has data issue: true hasContentIssue false

Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension

Published online by Cambridge University Press:  19 September 2008

Christian Bonatti
Affiliation:
Université de Bourgogne, BP 138 Departement de Mathématiques, 21004 Dijon Cedex, France
Remi Langevin
Affiliation:
Université de Bourgogne, BP 138 Departement de Mathématiques, 21004 Dijon Cedex, France

Abstract

We construct an example of transitive Anosov flow on a compact 3-manifold, which admits a transversal torus and is not the suspension of an Anosov diffeomorphism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ba]Barbot, Thierry. Géométrie transverse des flots d'Anosov. Thèse. Lyon décembre 1992.Google Scholar
[Br1]Brunella, Marco. Separating the basic sets of a nontrasitive Anosov flow. Preprint SISSA 22/92/M Trieste février 1992.Google Scholar
[Br2]Brunella, Marco. On the discrete Godbillon—Vey invariant and Dehn surgeries on geodesic flows, à paraitre aux annales de la faculté des sicneces de Toulouse.Google Scholar
[C]Christy, J.. Branched surfaces and attractors. Trans. Amer. Math. Soc. 339 (1993), 759785.Google Scholar
[F-W]Franks, J. and Williams, R.F.. Anomalous Anosov Flows, Global Theory of Dynamical Systems. Springer Lecture Notes in Mathematics 819. Springer: Berlin, 1980, pp. 158174.Google Scholar
[Go]Goodman, S.. Dehn surgery on Anosov flows Geometric Dynamics, Springer Lecture Notes in Mathematics 1007. Springer: Berlin, 1983. pp. 300307.Google Scholar
[H-T]Handel, M. & Thurston, W.. Anosov flows on new 3-manifolds. Invent. Math. 59 (1980), 95103.CrossRefGoogle Scholar
[Ve]Verjovsky, A.. Codimension 1 Anosov flows. Bol. Soc. Math. Mexicana 19 (1974), 4977.Google Scholar
[Wa]Waldhausen, F.. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. 2, Invent. Math. 3 (1967), 308333.CrossRefGoogle Scholar