Article contents
Unique equilibrium states, large deviations and Lyapunov spectra for the Katok map
Published online by Cambridge University Press: 20 March 2020
Abstract
We study the thermodynamic formalism of a $C^{\infty }$ non-uniformly hyperbolic diffeomorphism on the 2-torus, known as the Katok map. We prove for a Hölder continuous potential with one additional condition, or geometric $t$-potential $\unicode[STIX]{x1D711}_{t}$ with $t<1$, the equilibrium state exists and is unique. We derive the level-2 large deviation principle for the equilibrium state of $\unicode[STIX]{x1D711}_{t}$. We study the multifractal spectra of the Katok map for the entropy and dimension of level sets of Lyapunov exponents.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s) 2020. Published by Cambridge University Press
References
- 3
- Cited by